| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enrex | GIF version | ||
| Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
| Ref | Expression |
|---|---|
| enrex | ⊢ ~R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npex 7668 | . . . 4 ⊢ P ∈ V | |
| 2 | 1, 1 | xpex 4834 | . . 3 ⊢ (P × P) ∈ V |
| 3 | 2, 2 | xpex 4834 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
| 4 | df-enr 7921 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 5 | opabssxp 4793 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
| 6 | 4, 5 | eqsstri 3256 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
| 7 | 3, 6 | ssexi 4222 | 1 ⊢ ~R ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 〈cop 3669 {copab 4144 × cxp 4717 (class class class)co 6007 Pcnp 7486 +P cpp 7488 ~R cer 7491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-qs 6694 df-ni 7499 df-nqqs 7543 df-inp 7661 df-enr 7921 |
| This theorem is referenced by: addsrpr 7940 mulsrpr 7941 ltsrprg 7942 0r 7945 1sr 7946 m1r 7947 addclsr 7948 mulclsr 7949 recexgt0sr 7968 prsrcl 7979 ltpsrprg 7998 mappsrprg 7999 suplocsrlemb 8001 pitonnlem2 8042 pitonn 8043 pitore 8045 recnnre 8046 |
| Copyright terms: Public domain | W3C validator |