![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enrex | GIF version |
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
Ref | Expression |
---|---|
enrex | ⊢ ~R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npex 7486 | . . . 4 ⊢ P ∈ V | |
2 | 1, 1 | xpex 4753 | . . 3 ⊢ (P × P) ∈ V |
3 | 2, 2 | xpex 4753 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
4 | df-enr 7739 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
5 | opabssxp 4712 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
6 | 4, 5 | eqsstri 3199 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
7 | 3, 6 | ssexi 4153 | 1 ⊢ ~R ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2158 Vcvv 2749 〈cop 3607 {copab 4075 × cxp 4636 (class class class)co 5888 Pcnp 7304 +P cpp 7306 ~R cer 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-qs 6555 df-ni 7317 df-nqqs 7361 df-inp 7479 df-enr 7739 |
This theorem is referenced by: addsrpr 7758 mulsrpr 7759 ltsrprg 7760 0r 7763 1sr 7764 m1r 7765 addclsr 7766 mulclsr 7767 recexgt0sr 7786 prsrcl 7797 ltpsrprg 7816 mappsrprg 7817 suplocsrlemb 7819 pitonnlem2 7860 pitonn 7861 pitore 7863 recnnre 7864 |
Copyright terms: Public domain | W3C validator |