![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enrex | GIF version |
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
Ref | Expression |
---|---|
enrex | ⊢ ~R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npex 7472 | . . . 4 ⊢ P ∈ V | |
2 | 1, 1 | xpex 4742 | . . 3 ⊢ (P × P) ∈ V |
3 | 2, 2 | xpex 4742 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
4 | df-enr 7725 | . . 3 ⊢ ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
5 | opabssxp 4701 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
6 | 4, 5 | eqsstri 3188 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
7 | 3, 6 | ssexi 4142 | 1 ⊢ ~R ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2738 ⟨cop 3596 {copab 4064 × cxp 4625 (class class class)co 5875 Pcnp 7290 +P cpp 7292 ~R cer 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-qs 6541 df-ni 7303 df-nqqs 7347 df-inp 7465 df-enr 7725 |
This theorem is referenced by: addsrpr 7744 mulsrpr 7745 ltsrprg 7746 0r 7749 1sr 7750 m1r 7751 addclsr 7752 mulclsr 7753 recexgt0sr 7772 prsrcl 7783 ltpsrprg 7802 mappsrprg 7803 suplocsrlemb 7805 pitonnlem2 7846 pitonn 7847 pitore 7849 recnnre 7850 |
Copyright terms: Public domain | W3C validator |