ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrex GIF version

Theorem enrex 7750
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
Assertion
Ref Expression
enrex ~R ∈ V

Proof of Theorem enrex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 7486 . . . 4 P ∈ V
21, 1xpex 4753 . . 3 (P × P) ∈ V
32, 2xpex 4753 . 2 ((P × P) × (P × P)) ∈ V
4 df-enr 7739 . . 3 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
5 opabssxp 4712 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P))
64, 5eqsstri 3199 . 2 ~R ⊆ ((P × P) × (P × P))
73, 6ssexi 4153 1 ~R ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1363  wex 1502  wcel 2158  Vcvv 2749  cop 3607  {copab 4075   × cxp 4636  (class class class)co 5888  Pcnp 7304   +P cpp 7306   ~R cer 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-qs 6555  df-ni 7317  df-nqqs 7361  df-inp 7479  df-enr 7739
This theorem is referenced by:  addsrpr  7758  mulsrpr  7759  ltsrprg  7760  0r  7763  1sr  7764  m1r  7765  addclsr  7766  mulclsr  7767  recexgt0sr  7786  prsrcl  7797  ltpsrprg  7816  mappsrprg  7817  suplocsrlemb  7819  pitonnlem2  7860  pitonn  7861  pitore  7863  recnnre  7864
  Copyright terms: Public domain W3C validator