![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addgt0sr | GIF version |
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
Ref | Expression |
---|---|
addgt0sr | ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R 𝐵) | |
2 | ltrelsr 7768 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
3 | 2 | brel 4696 | . . . . . 6 ⊢ (0R <R 𝐵 → (0R ∈ R ∧ 𝐵 ∈ R)) |
4 | 3 | simprd 114 | . . . . 5 ⊢ (0R <R 𝐵 → 𝐵 ∈ R) |
5 | 2 | brel 4696 | . . . . . 6 ⊢ (0R <R 𝐴 → (0R ∈ R ∧ 𝐴 ∈ R)) |
6 | 5 | simprd 114 | . . . . 5 ⊢ (0R <R 𝐴 → 𝐴 ∈ R) |
7 | 0r 7780 | . . . . . 6 ⊢ 0R ∈ R | |
8 | ltasrg 7800 | . . . . . 6 ⊢ ((0R ∈ R ∧ 𝐵 ∈ R ∧ 𝐴 ∈ R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) | |
9 | 7, 8 | mp3an1 1335 | . . . . 5 ⊢ ((𝐵 ∈ R ∧ 𝐴 ∈ R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) |
10 | 4, 6, 9 | syl2anr 290 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) |
11 | 1, 10 | mpbid 147 | . . 3 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴 +R 0R) <R (𝐴 +R 𝐵)) |
12 | 6 | adantr 276 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 ∈ R) |
13 | 0idsr 7797 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | |
14 | 13 | breq1d 4028 | . . . 4 ⊢ (𝐴 ∈ R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
15 | 12, 14 | syl 14 | . . 3 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
16 | 11, 15 | mpbid 147 | . 2 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵)) |
17 | ltsosr 7794 | . . 3 ⊢ <R Or R | |
18 | 17, 2 | sotri 5042 | . 2 ⊢ ((0R <R 𝐴 ∧ 𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵)) |
19 | 16, 18 | syldan 282 | 1 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5897 Rcnr 7327 0Rc0r 7328 +R cplr 7331 <R cltr 7333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-1o 6442 df-2o 6443 df-oadd 6446 df-omul 6447 df-er 6560 df-ec 6562 df-qs 6566 df-ni 7334 df-pli 7335 df-mi 7336 df-lti 7337 df-plpq 7374 df-mpq 7375 df-enq 7377 df-nqqs 7378 df-plqqs 7379 df-mqqs 7380 df-1nqqs 7381 df-rq 7382 df-ltnqqs 7383 df-enq0 7454 df-nq0 7455 df-0nq0 7456 df-plq0 7457 df-mq0 7458 df-inp 7496 df-i1p 7497 df-iplp 7498 df-iltp 7500 df-enr 7756 df-nr 7757 df-plr 7758 df-ltr 7760 df-0r 7761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |