| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addgt0sr | GIF version | ||
| Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
| Ref | Expression |
|---|---|
| addgt0sr | ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R 𝐵) | |
| 2 | ltrelsr 7886 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
| 3 | 2 | brel 4745 | . . . . . 6 ⊢ (0R <R 𝐵 → (0R ∈ R ∧ 𝐵 ∈ R)) |
| 4 | 3 | simprd 114 | . . . . 5 ⊢ (0R <R 𝐵 → 𝐵 ∈ R) |
| 5 | 2 | brel 4745 | . . . . . 6 ⊢ (0R <R 𝐴 → (0R ∈ R ∧ 𝐴 ∈ R)) |
| 6 | 5 | simprd 114 | . . . . 5 ⊢ (0R <R 𝐴 → 𝐴 ∈ R) |
| 7 | 0r 7898 | . . . . . 6 ⊢ 0R ∈ R | |
| 8 | ltasrg 7918 | . . . . . 6 ⊢ ((0R ∈ R ∧ 𝐵 ∈ R ∧ 𝐴 ∈ R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) | |
| 9 | 7, 8 | mp3an1 1337 | . . . . 5 ⊢ ((𝐵 ∈ R ∧ 𝐴 ∈ R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) |
| 10 | 4, 6, 9 | syl2anr 290 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) |
| 11 | 1, 10 | mpbid 147 | . . 3 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴 +R 0R) <R (𝐴 +R 𝐵)) |
| 12 | 6 | adantr 276 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 ∈ R) |
| 13 | 0idsr 7915 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | |
| 14 | 13 | breq1d 4069 | . . . 4 ⊢ (𝐴 ∈ R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
| 15 | 12, 14 | syl 14 | . . 3 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
| 16 | 11, 15 | mpbid 147 | . 2 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵)) |
| 17 | ltsosr 7912 | . . 3 ⊢ <R Or R | |
| 18 | 17, 2 | sotri 5097 | . 2 ⊢ ((0R <R 𝐴 ∧ 𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵)) |
| 19 | 16, 18 | syldan 282 | 1 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 Rcnr 7445 0Rc0r 7446 +R cplr 7449 <R cltr 7451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-iltp 7618 df-enr 7874 df-nr 7875 df-plr 7876 df-ltr 7878 df-0r 7879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |