| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addgt0sr | GIF version | ||
| Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
| Ref | Expression |
|---|---|
| addgt0sr | ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R 𝐵) | |
| 2 | ltrelsr 7851 | . . . . . . 7 ⊢ <R ⊆ (R × R) | |
| 3 | 2 | brel 4727 | . . . . . 6 ⊢ (0R <R 𝐵 → (0R ∈ R ∧ 𝐵 ∈ R)) |
| 4 | 3 | simprd 114 | . . . . 5 ⊢ (0R <R 𝐵 → 𝐵 ∈ R) |
| 5 | 2 | brel 4727 | . . . . . 6 ⊢ (0R <R 𝐴 → (0R ∈ R ∧ 𝐴 ∈ R)) |
| 6 | 5 | simprd 114 | . . . . 5 ⊢ (0R <R 𝐴 → 𝐴 ∈ R) |
| 7 | 0r 7863 | . . . . . 6 ⊢ 0R ∈ R | |
| 8 | ltasrg 7883 | . . . . . 6 ⊢ ((0R ∈ R ∧ 𝐵 ∈ R ∧ 𝐴 ∈ R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) | |
| 9 | 7, 8 | mp3an1 1337 | . . . . 5 ⊢ ((𝐵 ∈ R ∧ 𝐴 ∈ R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) |
| 10 | 4, 6, 9 | syl2anr 290 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵))) |
| 11 | 1, 10 | mpbid 147 | . . 3 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴 +R 0R) <R (𝐴 +R 𝐵)) |
| 12 | 6 | adantr 276 | . . . 4 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 ∈ R) |
| 13 | 0idsr 7880 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | |
| 14 | 13 | breq1d 4054 | . . . 4 ⊢ (𝐴 ∈ R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
| 15 | 12, 14 | syl 14 | . . 3 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵))) |
| 16 | 11, 15 | mpbid 147 | . 2 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵)) |
| 17 | ltsosr 7877 | . . 3 ⊢ <R Or R | |
| 18 | 17, 2 | sotri 5078 | . 2 ⊢ ((0R <R 𝐴 ∧ 𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵)) |
| 19 | 16, 18 | syldan 282 | 1 ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 class class class wbr 4044 (class class class)co 5944 Rcnr 7410 0Rc0r 7411 +R cplr 7414 <R cltr 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-iltp 7583 df-enr 7839 df-nr 7840 df-plr 7841 df-ltr 7843 df-0r 7844 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |