| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfltpnf | GIF version | ||
| Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfltpnf | ⊢ -∞ < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . 4 ⊢ -∞ = -∞ | |
| 2 | eqid 2206 | . . . 4 ⊢ +∞ = +∞ | |
| 3 | olc 713 | . . . 4 ⊢ ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))) | |
| 4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) |
| 5 | 4 | orci 733 | . 2 ⊢ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))) |
| 6 | mnfxr 8142 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 7 | pnfxr 8138 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 8 | ltxr 9910 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))) | |
| 9 | 6, 7, 8 | mp2an 426 | . 2 ⊢ (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))) |
| 10 | 5, 9 | mpbir 146 | 1 ⊢ -∞ < +∞ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 class class class wbr 4048 ℝcr 7937 <ℝ cltrr 7942 +∞cpnf 8117 -∞cmnf 8118 ℝ*cxr 8119 < clt 8120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 |
| This theorem is referenced by: mnfltxr 9921 xrlttr 9930 xrltso 9931 xrlttri3 9932 nltpnft 9949 npnflt 9950 ngtmnft 9952 nmnfgt 9953 xltnegi 9970 xposdif 10017 |
| Copyright terms: Public domain | W3C validator |