![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfltpnf | GIF version |
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnfltpnf | ⊢ -∞ < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ -∞ = -∞ | |
2 | eqid 2193 | . . . 4 ⊢ +∞ = +∞ | |
3 | olc 712 | . . . 4 ⊢ ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))) | |
4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) |
5 | 4 | orci 732 | . 2 ⊢ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))) |
6 | mnfxr 8078 | . . 3 ⊢ -∞ ∈ ℝ* | |
7 | pnfxr 8074 | . . 3 ⊢ +∞ ∈ ℝ* | |
8 | ltxr 9844 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))) | |
9 | 6, 7, 8 | mp2an 426 | . 2 ⊢ (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))) |
10 | 5, 9 | mpbir 146 | 1 ⊢ -∞ < +∞ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 <ℝ cltrr 7878 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 < clt 8056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 |
This theorem is referenced by: mnfltxr 9855 xrlttr 9864 xrltso 9865 xrlttri3 9866 nltpnft 9883 npnflt 9884 ngtmnft 9886 nmnfgt 9887 xltnegi 9904 xposdif 9951 |
Copyright terms: Public domain | W3C validator |