ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf GIF version

Theorem mnfltpnf 9685
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf -∞ < +∞

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2157 . . . 4 -∞ = -∞
2 eqid 2157 . . . 4 +∞ = +∞
3 olc 701 . . . 4 ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)))
41, 2, 3mp2an 423 . . 3 (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))
54orci 721 . 2 ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))
6 mnfxr 7928 . . 3 -∞ ∈ ℝ*
7 pnfxr 7924 . . 3 +∞ ∈ ℝ*
8 ltxr 9675 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))))
96, 7, 8mp2an 423 . 2 (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))
105, 9mpbir 145 1 -∞ < +∞
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 698   = wceq 1335  wcel 2128   class class class wbr 3965  cr 7725   < cltrr 7730  +∞cpnf 7903  -∞cmnf 7904  *cxr 7905   < clt 7906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-cnex 7817
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4591  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911
This theorem is referenced by:  mnfltxr  9686  xrlttr  9695  xrltso  9696  xrlttri3  9697  nltpnft  9711  npnflt  9712  ngtmnft  9714  nmnfgt  9715  xltnegi  9732  xposdif  9779
  Copyright terms: Public domain W3C validator