![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restin | GIF version |
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
restin.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restin | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | uniexg 4451 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
3 | 1, 2 | eqeltrid 2274 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑋 ∈ V) |
5 | restco 13945 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) | |
6 | 5 | 3com23 1210 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑋 ∈ V) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
7 | 4, 6 | mpd3an3 1348 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
8 | 1 | restid 12716 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝑋) = 𝐽) |
10 | 9 | oveq1d 5903 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
11 | incom 3339 | . . . 4 ⊢ (𝑋 ∩ 𝐴) = (𝐴 ∩ 𝑋) | |
12 | 11 | oveq2i 5899 | . . 3 ⊢ (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋)) |
13 | 12 | a1i 9 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
14 | 7, 10, 13 | 3eqtr3d 2228 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ∩ cin 3140 ∪ cuni 3821 (class class class)co 5888 ↾t crest 12705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-rest 12707 |
This theorem is referenced by: restuni2 13948 cnrest2r 14008 |
Copyright terms: Public domain | W3C validator |