| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restin | GIF version | ||
| Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| restin.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restin | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg 4507 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 3 | 1, 2 | eqeltrid 2296 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑋 ∈ V) |
| 5 | restco 14813 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) | |
| 6 | 5 | 3com23 1214 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑋 ∈ V) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
| 7 | 4, 6 | mpd3an3 1353 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t (𝑋 ∩ 𝐴))) |
| 8 | 1 | restid 13249 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝑋) = 𝐽) |
| 10 | 9 | oveq1d 5989 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ((𝐽 ↾t 𝑋) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
| 11 | incom 3376 | . . . 4 ⊢ (𝑋 ∩ 𝐴) = (𝐴 ∩ 𝑋) | |
| 12 | 11 | oveq2i 5985 | . . 3 ⊢ (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋)) |
| 13 | 12 | a1i 9 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t (𝑋 ∩ 𝐴)) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
| 14 | 7, 10, 13 | 3eqtr3d 2250 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∩ cin 3176 ∪ cuni 3867 (class class class)co 5974 ↾t crest 13238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-rest 13240 |
| This theorem is referenced by: restuni2 14816 cnrest2r 14876 |
| Copyright terms: Public domain | W3C validator |