| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringrz | GIF version | ||
| Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| rngz.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngz.t | ⊢ · = (.r‘𝑅) |
| rngz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ringrz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 13807 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | rngz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rngz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 13405 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | eqid 2206 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | 2, 5, 3 | grplid 13407 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 7 | 1, 4, 6 | syl2anc2 412 | . . . . 5 ⊢ (𝑅 ∈ Ring → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 9 | 8 | oveq2d 5967 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = (𝑋 · 0 )) |
| 10 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 11 | 1, 4 | syl 14 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 12 | 11 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 13 | 10, 12, 12 | 3jca 1180 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
| 14 | rngz.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 15 | 2, 5, 14 | ringdi 13824 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
| 16 | 13, 15 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
| 17 | 1 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 18 | 2, 14 | ringcl 13819 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
| 19 | 12, 18 | mpd3an3 1351 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
| 20 | 2, 5, 3 | grplid 13407 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 0 )) = (𝑋 · 0 )) |
| 21 | 20 | eqcomd 2212 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
| 22 | 17, 19, 21 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
| 23 | 9, 16, 22 | 3eqtr3d 2247 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
| 24 | 2, 5 | grprcan 13413 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ ((𝑋 · 0 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ (𝑋 · 0 ) ∈ 𝐵)) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
| 25 | 17, 19, 12, 19, 24 | syl13anc 1252 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
| 26 | 23, 25 | mpbid 147 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 0gc0g 13132 Grpcgrp 13376 Ringcrg 13802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-mgp 13727 df-ring 13804 |
| This theorem is referenced by: ringrzd 13852 ringsrg 13853 ringinvnz1ne0 13855 ringinvnzdiv 13856 ringnegr 13858 dvdsr02 13911 rrgeq0 14071 unitrrg 14073 domneq0 14078 lmodvs0 14128 |
| Copyright terms: Public domain | W3C validator |