ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmul2 GIF version

Theorem dvdsmul2 10912
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmul2
StepHypRef Expression
1 zmulcl 8773 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
2 eqid 2088 . . 3 (𝑀 · 𝑁) = (𝑀 · 𝑁)
3 dvds0lem 10899 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑀 · 𝑁) = (𝑀 · 𝑁)) → 𝑁 ∥ (𝑀 · 𝑁))
42, 3mpan2 416 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
51, 4mpd3an3 1274 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438   class class class wbr 3837  (class class class)co 5634   · cmul 7334  cz 8720  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-dvds 10890
This theorem is referenced by:  iddvdsexp  10913  dvdsmultr2  10929  dvdsfac  10954  dvdsexp  10955  dvdssqim  11106  lcmval  11138  lcmcllem  11142  qredeq  11171  cncongr1  11178  sqpweven  11246  2sqpwodd  11247  hashdvds  11290  phimullem  11294  oddennn  11298
  Copyright terms: Public domain W3C validator