| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsmul2 | GIF version | ||
| Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsmul2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl 9428 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
| 2 | eqid 2205 | . . 3 ⊢ (𝑀 · 𝑁) = (𝑀 · 𝑁) | |
| 3 | dvds0lem 12145 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑀 · 𝑁) = (𝑀 · 𝑁)) → 𝑁 ∥ (𝑀 · 𝑁)) | |
| 4 | 2, 3 | mpan2 425 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
| 5 | 1, 4 | mpd3an3 1351 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 class class class wbr 4045 (class class class)co 5946 · cmul 7932 ℤcz 9374 ∥ cdvds 12131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-dvds 12132 |
| This theorem is referenced by: iddvdsexp 12159 dvdsmultr2 12177 dvdsfac 12204 dvdsexp 12205 bitsinv1lem 12305 dvdssqim 12378 lcmval 12418 lcmcllem 12422 qredeq 12451 cncongr1 12458 sqpweven 12530 2sqpwodd 12531 hashdvds 12576 phimullem 12580 difsqpwdvds 12694 oddprmdvds 12710 4sqlem8 12741 dec2dvds 12767 oddennn 12796 perfectlem2 15505 lgsdir2lem2 15539 gausslemma2dlem1f1o 15570 lgsquadlem2 15588 lgsquadlem3 15589 lgsquad2lem1 15591 lgsquad2lem2 15592 2sqlem3 15627 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |