ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmul2 GIF version

Theorem dvdsmul2 11960
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmul2
StepHypRef Expression
1 zmulcl 9373 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
2 eqid 2193 . . 3 (𝑀 · 𝑁) = (𝑀 · 𝑁)
3 dvds0lem 11947 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑀 · 𝑁) = (𝑀 · 𝑁)) → 𝑁 ∥ (𝑀 · 𝑁))
42, 3mpan2 425 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
51, 4mpd3an3 1349 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919   · cmul 7879  cz 9320  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by:  iddvdsexp  11961  dvdsmultr2  11979  dvdsfac  12005  dvdsexp  12006  dvdssqim  12164  lcmval  12204  lcmcllem  12208  qredeq  12237  cncongr1  12244  sqpweven  12316  2sqpwodd  12317  hashdvds  12362  phimullem  12366  difsqpwdvds  12479  oddprmdvds  12495  4sqlem8  12526  oddennn  12552  lgsdir2lem2  15186  gausslemma2dlem1f1o  15217  lgsquadlem2  15235  lgsquadlem3  15236  lgsquad2lem1  15238  lgsquad2lem2  15239  2sqlem3  15274  2sqlem8  15280
  Copyright terms: Public domain W3C validator