ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofvalg GIF version

Theorem hmeofvalg 14471
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeofvalg ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾

Proof of Theorem hmeofvalg
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 14364 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
2 rabexg 4172 . . 3 ((𝐽 Cn 𝐾) ∈ V → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V)
31, 2syl 14 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V)
4 oveq12 5927 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾))
5 oveq12 5927 . . . . . 6 ((𝑘 = 𝐾𝑗 = 𝐽) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
65ancoms 268 . . . . 5 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑘 Cn 𝑗) = (𝐾 Cn 𝐽))
76eleq2d 2263 . . . 4 ((𝑗 = 𝐽𝑘 = 𝐾) → (𝑓 ∈ (𝑘 Cn 𝑗) ↔ 𝑓 ∈ (𝐾 Cn 𝐽)))
84, 7rabeqbidv 2755 . . 3 ((𝑗 = 𝐽𝑘 = 𝐾) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
9 df-hmeo 14469 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
108, 9ovmpoga 6048 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ∈ V) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
113, 10mpd3an3 1349 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  ccnv 4658  (class class class)co 5918  Topctop 14165   Cn ccn 14353  Homeochmeo 14468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-top 14166  df-topon 14179  df-cn 14356  df-hmeo 14469
This theorem is referenced by:  ishmeo  14472
  Copyright terms: Public domain W3C validator