Step | Hyp | Ref
| Expression |
1 | | srgmnd 12943 |
. . . 4
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
2 | 1, 1 | jca 306 |
. . 3
⊢ (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
3 | 2 | adantr 276 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
4 | | srglmhm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
5 | | srglmhm.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
6 | 4, 5 | srgcl 12946 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
7 | 6 | 3expa 1203 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
8 | 7 | fmpttd 5663 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) |
9 | | 3anass 982 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
10 | | eqid 2175 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
11 | 4, 10, 5 | srgdi 12950 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
12 | 9, 11 | sylan2br 288 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
13 | 12 | anassrs 400 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
14 | | eqid 2175 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) |
15 | | oveq2 5873 |
. . . . . 6
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g‘𝑅)𝑏))) |
16 | 4, 10 | srgacl 12958 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
17 | 16 | 3expb 1204 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
18 | 17 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
19 | | simpll 527 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ SRing) |
20 | | simplr 528 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
21 | 4, 5 | srgcl 12946 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) ∈ 𝐵) |
22 | 19, 20, 18, 21 | syl3anc 1238 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · (𝑎(+g‘𝑅)𝑏)) ∈ 𝐵) |
23 | 14, 15, 18, 22 | fvmptd3 5601 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (𝑋 · (𝑎(+g‘𝑅)𝑏))) |
24 | | oveq2 5873 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎)) |
25 | | simprl 529 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
26 | 4, 5 | srgcl 12946 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑋 · 𝑎) ∈ 𝐵) |
27 | 19, 20, 25, 26 | syl3anc 1238 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · 𝑎) ∈ 𝐵) |
28 | 14, 24, 25, 27 | fvmptd3 5601 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎)) |
29 | | oveq2 5873 |
. . . . . . 7
⊢ (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏)) |
30 | | simprr 531 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
31 | 4, 5 | srgcl 12946 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑋 · 𝑏) ∈ 𝐵) |
32 | 19, 20, 30, 31 | syl3anc 1238 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑋 · 𝑏) ∈ 𝐵) |
33 | 14, 29, 30, 32 | fvmptd3 5601 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏)) |
34 | 28, 33 | oveq12d 5883 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g‘𝑅)(𝑋 · 𝑏))) |
35 | 13, 23, 34 | 3eqtr4d 2218 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏))) |
36 | 35 | ralrimivva 2557 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏))) |
37 | | oveq2 5873 |
. . . . 5
⊢ (𝑥 = (0g‘𝑅) → (𝑋 · 𝑥) = (𝑋 ·
(0g‘𝑅))) |
38 | | eqid 2175 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
39 | 4, 38 | srg0cl 12953 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
(0g‘𝑅)
∈ 𝐵) |
40 | 39 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (0g‘𝑅) ∈ 𝐵) |
41 | 4, 5 | srgcl 12946 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → (𝑋 ·
(0g‘𝑅))
∈ 𝐵) |
42 | 40, 41 | mpd3an3 1338 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ·
(0g‘𝑅))
∈ 𝐵) |
43 | 14, 37, 40, 42 | fvmptd3 5601 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (𝑋 ·
(0g‘𝑅))) |
44 | 4, 5, 38 | srgrz 12960 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ·
(0g‘𝑅)) =
(0g‘𝑅)) |
45 | 43, 44 | eqtrd 2208 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (0g‘𝑅)) |
46 | 8, 36, 45 | 3jca 1177 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (0g‘𝑅))) |
47 | 4, 4, 10, 10, 38, 38 | ismhm 12715 |
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(0g‘𝑅)) = (0g‘𝑅)))) |
48 | 3, 46, 47 | sylanbrc 417 |
1
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |