ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglmhm GIF version

Theorem srglmhm 13625
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srglmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 13599 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 306 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 276 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . 6 · = (.r𝑅)
64, 5srgcl 13602 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1205 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 5720 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 984 . . . . . . 7 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
10 eqid 2196 . . . . . . . 8 (+g𝑅) = (+g𝑅)
114, 10, 5srgdi 13606 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
129, 11sylan2br 288 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
1312anassrs 400 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
14 eqid 2196 . . . . . 6 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
15 oveq2 5933 . . . . . 6 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g𝑅)𝑏)))
164, 10srgacl 13614 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
17163expb 1206 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1817adantlr 477 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
19 simpll 527 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ SRing)
20 simplr 528 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑋𝐵)
214, 5srgcl 13602 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑋𝐵 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ 𝐵)
2219, 20, 18, 21syl3anc 1249 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ 𝐵)
2314, 15, 18, 22fvmptd3 5658 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
24 oveq2 5933 . . . . . . 7 (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎))
25 simprl 529 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
264, 5srgcl 13602 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑎𝐵) → (𝑋 · 𝑎) ∈ 𝐵)
2719, 20, 25, 26syl3anc 1249 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · 𝑎) ∈ 𝐵)
2814, 24, 25, 27fvmptd3 5658 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎))
29 oveq2 5933 . . . . . . 7 (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏))
30 simprr 531 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
314, 5srgcl 13602 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑏𝐵) → (𝑋 · 𝑏) ∈ 𝐵)
3219, 20, 30, 31syl3anc 1249 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · 𝑏) ∈ 𝐵)
3314, 29, 30, 32fvmptd3 5658 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏))
3428, 33oveq12d 5943 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
3513, 23, 343eqtr4d 2239 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
3635ralrimivva 2579 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
37 oveq2 5933 . . . . 5 (𝑥 = (0g𝑅) → (𝑋 · 𝑥) = (𝑋 · (0g𝑅)))
38 eqid 2196 . . . . . . 7 (0g𝑅) = (0g𝑅)
394, 38srg0cl 13609 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
4039adantr 276 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
414, 5srgcl 13602 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑋𝐵 ∧ (0g𝑅) ∈ 𝐵) → (𝑋 · (0g𝑅)) ∈ 𝐵)
4240, 41mpd3an3 1349 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) ∈ 𝐵)
4314, 37, 40, 42fvmptd3 5658 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
444, 5, 38srgrz 13616 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
4543, 44eqtrd 2229 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))
468, 36, 453jca 1179 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅)))
474, 4, 10, 10, 38, 38ismhm 13163 . 2 ((𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))))
483, 46, 47sylanbrc 417 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  0gc0g 12958  Mndcmnd 13118   MndHom cmhm 13159  SRingcsrg 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-cmn 13492  df-mgp 13553  df-srg 13596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator