ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglmhm GIF version

Theorem srglmhm 13315
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b ๐ต = (Baseโ€˜๐‘…)
srglmhm.t ยท = (.rโ€˜๐‘…)
Assertion
Ref Expression
srglmhm ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) โˆˆ (๐‘… MndHom ๐‘…))
Distinct variable groups:   ๐‘ฅ,๐ต   ๐‘ฅ,๐‘…   ๐‘ฅ,๐‘‹   ๐‘ฅ, ยท

Proof of Theorem srglmhm
Dummy variables ๐‘Ž ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 13289 . . . 4 (๐‘… โˆˆ SRing โ†’ ๐‘… โˆˆ Mnd)
21, 1jca 306 . . 3 (๐‘… โˆˆ SRing โ†’ (๐‘… โˆˆ Mnd โˆง ๐‘… โˆˆ Mnd))
32adantr 276 . 2 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘… โˆˆ Mnd โˆง ๐‘… โˆˆ Mnd))
4 srglmhm.b . . . . . 6 ๐ต = (Baseโ€˜๐‘…)
5 srglmhm.t . . . . . 6 ยท = (.rโ€˜๐‘…)
64, 5srgcl 13292 . . . . 5 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐‘‹ ยท ๐‘ฅ) โˆˆ ๐ต)
763expa 1205 . . . 4 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐‘‹ ยท ๐‘ฅ) โˆˆ ๐ต)
87fmpttd 5688 . . 3 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)):๐ตโŸถ๐ต)
9 3anass 984 . . . . . . 7 ((๐‘‹ โˆˆ ๐ต โˆง ๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต) โ†” (๐‘‹ โˆˆ ๐ต โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)))
10 eqid 2189 . . . . . . . 8 (+gโ€˜๐‘…) = (+gโ€˜๐‘…)
114, 10, 5srgdi 13296 . . . . . . 7 ((๐‘… โˆˆ SRing โˆง (๐‘‹ โˆˆ ๐ต โˆง ๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
129, 11sylan2br 288 . . . . . 6 ((๐‘… โˆˆ SRing โˆง (๐‘‹ โˆˆ ๐ต โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต))) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
1312anassrs 400 . . . . 5 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
14 eqid 2189 . . . . . 6 (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) = (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))
15 oveq2 5900 . . . . . 6 (๐‘ฅ = (๐‘Ž(+gโ€˜๐‘…)๐‘) โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)))
164, 10srgacl 13304 . . . . . . . 8 ((๐‘… โˆˆ SRing โˆง ๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต) โ†’ (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต)
17163expb 1206 . . . . . . 7 ((๐‘… โˆˆ SRing โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต)
1817adantlr 477 . . . . . 6 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต)
19 simpll 527 . . . . . . 7 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘… โˆˆ SRing)
20 simplr 528 . . . . . . 7 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘‹ โˆˆ ๐ต)
214, 5srgcl 13292 . . . . . . 7 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต โˆง (๐‘Ž(+gโ€˜๐‘…)๐‘) โˆˆ ๐ต) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) โˆˆ ๐ต)
2219, 20, 18, 21syl3anc 1249 . . . . . 6 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)) โˆˆ ๐ต)
2314, 15, 18, 22fvmptd3 5626 . . . . 5 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (๐‘‹ ยท (๐‘Ž(+gโ€˜๐‘…)๐‘)))
24 oveq2 5900 . . . . . . 7 (๐‘ฅ = ๐‘Ž โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท ๐‘Ž))
25 simprl 529 . . . . . . 7 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘Ž โˆˆ ๐ต)
264, 5srgcl 13292 . . . . . . . 8 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต โˆง ๐‘Ž โˆˆ ๐ต) โ†’ (๐‘‹ ยท ๐‘Ž) โˆˆ ๐ต)
2719, 20, 25, 26syl3anc 1249 . . . . . . 7 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท ๐‘Ž) โˆˆ ๐ต)
2814, 24, 25, 27fvmptd3 5626 . . . . . 6 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž) = (๐‘‹ ยท ๐‘Ž))
29 oveq2 5900 . . . . . . 7 (๐‘ฅ = ๐‘ โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท ๐‘))
30 simprr 531 . . . . . . 7 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ๐‘ โˆˆ ๐ต)
314, 5srgcl 13292 . . . . . . . 8 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต) โ†’ (๐‘‹ ยท ๐‘) โˆˆ ๐ต)
3219, 20, 30, 31syl3anc 1249 . . . . . . 7 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (๐‘‹ ยท ๐‘) โˆˆ ๐ต)
3314, 29, 30, 32fvmptd3 5626 . . . . . 6 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘) = (๐‘‹ ยท ๐‘))
3428, 33oveq12d 5910 . . . . 5 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) = ((๐‘‹ ยท ๐‘Ž)(+gโ€˜๐‘…)(๐‘‹ ยท ๐‘)))
3513, 23, 343eqtr4d 2232 . . . 4 (((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘Ž โˆˆ ๐ต โˆง ๐‘ โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)))
3635ralrimivva 2572 . . 3 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ โˆ€๐‘Ž โˆˆ ๐ต โˆ€๐‘ โˆˆ ๐ต ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)))
37 oveq2 5900 . . . . 5 (๐‘ฅ = (0gโ€˜๐‘…) โ†’ (๐‘‹ ยท ๐‘ฅ) = (๐‘‹ ยท (0gโ€˜๐‘…)))
38 eqid 2189 . . . . . . 7 (0gโ€˜๐‘…) = (0gโ€˜๐‘…)
394, 38srg0cl 13299 . . . . . 6 (๐‘… โˆˆ SRing โ†’ (0gโ€˜๐‘…) โˆˆ ๐ต)
4039adantr 276 . . . . 5 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (0gโ€˜๐‘…) โˆˆ ๐ต)
414, 5srgcl 13292 . . . . . 6 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต โˆง (0gโ€˜๐‘…) โˆˆ ๐ต) โ†’ (๐‘‹ ยท (0gโ€˜๐‘…)) โˆˆ ๐ต)
4240, 41mpd3an3 1349 . . . . 5 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘‹ ยท (0gโ€˜๐‘…)) โˆˆ ๐ต)
4314, 37, 40, 42fvmptd3 5626 . . . 4 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (๐‘‹ ยท (0gโ€˜๐‘…)))
444, 5, 38srgrz 13306 . . . 4 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘‹ ยท (0gโ€˜๐‘…)) = (0gโ€˜๐‘…))
4543, 44eqtrd 2222 . . 3 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (0gโ€˜๐‘…))
468, 36, 453jca 1179 . 2 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)):๐ตโŸถ๐ต โˆง โˆ€๐‘Ž โˆˆ ๐ต โˆ€๐‘ โˆˆ ๐ต ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) โˆง ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (0gโ€˜๐‘…)))
474, 4, 10, 10, 38, 38ismhm 12886 . 2 ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) โˆˆ (๐‘… MndHom ๐‘…) โ†” ((๐‘… โˆˆ Mnd โˆง ๐‘… โˆˆ Mnd) โˆง ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)):๐ตโŸถ๐ต โˆง โˆ€๐‘Ž โˆˆ ๐ต โˆ€๐‘ โˆˆ ๐ต ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(๐‘Ž(+gโ€˜๐‘…)๐‘)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘Ž)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜๐‘)) โˆง ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ))โ€˜(0gโ€˜๐‘…)) = (0gโ€˜๐‘…))))
483, 46, 47sylanbrc 417 1 ((๐‘… โˆˆ SRing โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘‹ ยท ๐‘ฅ)) โˆˆ (๐‘… MndHom ๐‘…))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆง w3a 980   = wceq 1364   โˆˆ wcel 2160  โˆ€wral 2468   โ†ฆ cmpt 4079  โŸถwf 5228  โ€˜cfv 5232  (class class class)co 5892  Basecbs 12487  +gcplusg 12562  .rcmulr 12563  0gc0g 12734  Mndcmnd 12850   MndHom cmhm 12882  SRingcsrg 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-addcom 7931  ax-addass 7933  ax-i2m1 7936  ax-0lt1 7937  ax-0id 7939  ax-rnegex 7940  ax-pre-ltirr 7943  ax-pre-ltadd 7947
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-map 6669  df-pnf 8014  df-mnf 8015  df-ltxr 8017  df-inn 8940  df-2 8998  df-3 8999  df-ndx 12490  df-slot 12491  df-base 12493  df-sets 12494  df-plusg 12575  df-mulr 12576  df-0g 12736  df-mgm 12805  df-sgrp 12838  df-mnd 12851  df-mhm 12884  df-cmn 13193  df-mgp 13243  df-srg 13286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator