ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglmhm GIF version

Theorem srglmhm 13964
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b 𝐵 = (Base‘𝑅)
srglmhm.t · = (.r𝑅)
Assertion
Ref Expression
srglmhm ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·

Proof of Theorem srglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 13938 . . . 4 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
21, 1jca 306 . . 3 (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
32adantr 276 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd))
4 srglmhm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srglmhm.t . . . . . 6 · = (.r𝑅)
64, 5srgcl 13941 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1227 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 5792 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 1006 . . . . . . 7 ((𝑋𝐵𝑎𝐵𝑏𝐵) ↔ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵)))
10 eqid 2229 . . . . . . . 8 (+g𝑅) = (+g𝑅)
114, 10, 5srgdi 13945 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
129, 11sylan2br 288 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑋𝐵 ∧ (𝑎𝐵𝑏𝐵))) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
1312anassrs 400 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
14 eqid 2229 . . . . . 6 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
15 oveq2 6015 . . . . . 6 (𝑥 = (𝑎(+g𝑅)𝑏) → (𝑋 · 𝑥) = (𝑋 · (𝑎(+g𝑅)𝑏)))
164, 10srgacl 13953 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
17163expb 1228 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1817adantlr 477 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
19 simpll 527 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ SRing)
20 simplr 528 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑋𝐵)
214, 5srgcl 13941 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑋𝐵 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ 𝐵)
2219, 20, 18, 21syl3anc 1271 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · (𝑎(+g𝑅)𝑏)) ∈ 𝐵)
2314, 15, 18, 22fvmptd3 5730 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (𝑋 · (𝑎(+g𝑅)𝑏)))
24 oveq2 6015 . . . . . . 7 (𝑥 = 𝑎 → (𝑋 · 𝑥) = (𝑋 · 𝑎))
25 simprl 529 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
264, 5srgcl 13941 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑎𝐵) → (𝑋 · 𝑎) ∈ 𝐵)
2719, 20, 25, 26syl3anc 1271 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · 𝑎) ∈ 𝐵)
2814, 24, 25, 27fvmptd3 5730 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎) = (𝑋 · 𝑎))
29 oveq2 6015 . . . . . . 7 (𝑥 = 𝑏 → (𝑋 · 𝑥) = (𝑋 · 𝑏))
30 simprr 531 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
314, 5srgcl 13941 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑏𝐵) → (𝑋 · 𝑏) ∈ 𝐵)
3219, 20, 30, 31syl3anc 1271 . . . . . . 7 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (𝑋 · 𝑏) ∈ 𝐵)
3314, 29, 30, 32fvmptd3 5730 . . . . . 6 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏) = (𝑋 · 𝑏))
3428, 33oveq12d 6025 . . . . 5 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) = ((𝑋 · 𝑎)(+g𝑅)(𝑋 · 𝑏)))
3513, 23, 343eqtr4d 2272 . . . 4 (((𝑅 ∈ SRing ∧ 𝑋𝐵) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
3635ralrimivva 2612 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)))
37 oveq2 6015 . . . . 5 (𝑥 = (0g𝑅) → (𝑋 · 𝑥) = (𝑋 · (0g𝑅)))
38 eqid 2229 . . . . . . 7 (0g𝑅) = (0g𝑅)
394, 38srg0cl 13948 . . . . . 6 (𝑅 ∈ SRing → (0g𝑅) ∈ 𝐵)
4039adantr 276 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (0g𝑅) ∈ 𝐵)
414, 5srgcl 13941 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑋𝐵 ∧ (0g𝑅) ∈ 𝐵) → (𝑋 · (0g𝑅)) ∈ 𝐵)
4240, 41mpd3an3 1372 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) ∈ 𝐵)
4314, 37, 40, 42fvmptd3 5730 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (𝑋 · (0g𝑅)))
444, 5, 38srgrz 13955 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
4543, 44eqtrd 2262 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))
468, 36, 453jca 1201 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅)))
474, 4, 10, 10, 38, 38ismhm 13502 . 2 ((𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑎(+g𝑅)𝑏)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑎)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑏)) ∧ ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(0g𝑅)) = (0g𝑅))))
483, 46, 47sylanbrc 417 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  0gc0g 13297  Mndcmnd 13457   MndHom cmhm 13498  SRingcsrg 13934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-cmn 13831  df-mgp 13892  df-srg 13935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator