| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsmul1 | GIF version | ||
| Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsmul1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9334 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | zcn 9334 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 3 | mulcom 8011 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) | |
| 4 | 1, 2, 3 | syl2anr 290 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) |
| 5 | zmulcl 9382 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
| 6 | dvds0lem 11969 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁)) | |
| 7 | 6 | ex 115 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 8 | 7 | 3com12 1209 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 9 | 5, 8 | mpd3an3 1349 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 10 | 4, 9 | mpd 13 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5923 ℂcc 7880 · cmul 7887 ℤcz 9329 ∥ cdvds 11955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-cnre 7993 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-sub 8202 df-neg 8203 df-inn 8994 df-n0 9253 df-z 9330 df-dvds 11956 |
| This theorem is referenced by: dvdsmultr1 11999 3dvdsdec 12033 3dvds2dec 12034 2teven 12055 opoe 12063 omoe 12064 z4even 12084 ndvdsi 12101 bits0e 12117 bits0o 12118 mulgcd 12194 dvdsmulgcd 12203 lcmval 12242 lcmcllem 12246 lcmgcdlem 12256 qredeq 12275 cncongr2 12283 nprm 12302 exprmfct 12317 prmdiv 12414 difsqpwdvds 12518 expnprm 12533 pockthlem 12536 4sqlem14 12584 evenennn 12621 znunit 14241 mpodvdsmulf1o 15252 perfectlem1 15261 lgsdir 15302 lgsquadlem1 15344 lgsquad2lem1 15348 lgsquad2lem2 15349 2lgsoddprmlem2 15373 2lgsoddprmlem3 15378 2sqlem4 15385 |
| Copyright terms: Public domain | W3C validator |