![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsmul1 | GIF version |
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsmul1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9276 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | zcn 9276 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
3 | mulcom 7958 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) | |
4 | 1, 2, 3 | syl2anr 290 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) |
5 | zmulcl 9324 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
6 | dvds0lem 11826 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁)) | |
7 | 6 | ex 115 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
8 | 7 | 3com12 1209 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
9 | 5, 8 | mpd3an3 1349 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
10 | 4, 9 | mpd 13 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5891 ℂcc 7827 · cmul 7834 ℤcz 9271 ∥ cdvds 11812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-sub 8148 df-neg 8149 df-inn 8938 df-n0 9195 df-z 9272 df-dvds 11813 |
This theorem is referenced by: dvdsmultr1 11856 3dvdsdec 11888 3dvds2dec 11889 2teven 11910 opoe 11918 omoe 11919 z4even 11939 ndvdsi 11956 mulgcd 12035 dvdsmulgcd 12044 lcmval 12081 lcmcllem 12085 lcmgcdlem 12095 qredeq 12114 cncongr2 12122 nprm 12141 exprmfct 12156 prmdiv 12253 difsqpwdvds 12355 expnprm 12369 pockthlem 12372 evenennn 12412 lgsdir 14833 2lgsoddprmlem2 14851 2lgsoddprmlem3 14856 2sqlem4 14862 |
Copyright terms: Public domain | W3C validator |