ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeng GIF version

Theorem f1oeng 6703
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oeng
StepHypRef Expression
1 f1ofo 5422 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fornex 6064 . . . 4 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5 32 . . 3 (𝐴𝐶 → (𝐹:𝐴1-1-onto𝐵𝐵 ∈ V))
43imp 123 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
5 f1oen2g 6701 . . 3 ((𝐴𝐶𝐵 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
653com23 1191 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵𝐵 ∈ V) → 𝐴𝐵)
74, 6mpd3an3 1320 1 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2128  Vcvv 2712   class class class wbr 3966  ontowfo 5169  1-1-ontowf1o 5170  cen 6684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-en 6687
This theorem is referenced by:  f1oen  6705  f1imaeng  6738  xpen  6791  fidifsnen  6816  dif1en  6825  f1ofi  6888  f1dmvrnfibi  6889  omp1eom  7040  endjusym  7041  eninl  7042  eninr  7043  summodclem2  11283  zsumdc  11285  prodmodclem2  11478  zproddc  11480  eulerthlemh  12110  ssnnctlemct  12217  pwf1oexmid  13613
  Copyright terms: Public domain W3C validator