ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeng GIF version

Theorem f1oeng 6775
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oeng
StepHypRef Expression
1 f1ofo 5483 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 focdmex 6134 . . . 4 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5 32 . . 3 (𝐴𝐶 → (𝐹:𝐴1-1-onto𝐵𝐵 ∈ V))
43imp 124 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
5 f1oen2g 6773 . . 3 ((𝐴𝐶𝐵 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
653com23 1211 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵𝐵 ∈ V) → 𝐴𝐵)
74, 6mpd3an3 1349 1 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160  Vcvv 2752   class class class wbr 4018  ontowfo 5229  1-1-ontowf1o 5230  cen 6756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-en 6759
This theorem is referenced by:  f1oen  6777  f1imaeng  6810  xpen  6863  fidifsnen  6888  dif1en  6897  f1ofi  6960  f1dmvrnfibi  6961  omp1eom  7112  endjusym  7113  eninl  7114  eninr  7115  summodclem2  11408  zsumdc  11410  prodmodclem2  11603  zproddc  11605  eulerthlemh  12249  ssnnctlemct  12465  conjsubgen  13178  pwf1oexmid  15134
  Copyright terms: Public domain W3C validator