| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeng | GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| Ref | Expression |
|---|---|
| f1oeng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo 5538 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 2 | focdmex 6210 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | |
| 3 | 1, 2 | syl5 32 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V)) |
| 4 | 3 | imp 124 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ V) |
| 5 | f1oen2g 6856 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 6 | 5 | 3com23 1212 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ V) → 𝐴 ≈ 𝐵) |
| 7 | 4, 6 | mpd3an3 1351 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 class class class wbr 4048 –onto→wfo 5275 –1-1-onto→wf1o 5276 ≈ cen 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-en 6838 |
| This theorem is referenced by: f1oen 6860 f1imaeng 6894 xpen 6954 fidifsnen 6979 dif1en 6988 f1ofi 7057 f1dmvrnfibi 7058 omp1eom 7209 endjusym 7210 eninl 7211 eninr 7212 summodclem2 11743 zsumdc 11745 prodmodclem2 11938 zproddc 11940 eulerthlemh 12603 4sqlem11 12774 ssnnctlemct 12867 conjsubgen 13664 znfi 14467 znhash 14468 2omapen 16048 pwf1oexmid 16051 |
| Copyright terms: Public domain | W3C validator |