ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeng GIF version

Theorem f1oeng 6825
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oeng
StepHypRef Expression
1 f1ofo 5514 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 focdmex 6181 . . . 4 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5 32 . . 3 (𝐴𝐶 → (𝐹:𝐴1-1-onto𝐵𝐵 ∈ V))
43imp 124 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
5 f1oen2g 6823 . . 3 ((𝐴𝐶𝐵 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
653com23 1211 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵𝐵 ∈ V) → 𝐴𝐵)
74, 6mpd3an3 1349 1 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  Vcvv 2763   class class class wbr 4034  ontowfo 5257  1-1-ontowf1o 5258  cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-en 6809
This theorem is referenced by:  f1oen  6827  f1imaeng  6860  xpen  6915  fidifsnen  6940  dif1en  6949  f1ofi  7018  f1dmvrnfibi  7019  omp1eom  7170  endjusym  7171  eninl  7172  eninr  7173  summodclem2  11564  zsumdc  11566  prodmodclem2  11759  zproddc  11761  eulerthlemh  12424  4sqlem11  12595  ssnnctlemct  12688  conjsubgen  13484  znfi  14287  znhash  14288  2omapen  15727  pwf1oexmid  15730
  Copyright terms: Public domain W3C validator