ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrnqg GIF version

Theorem ltrnqg 7603
Description: Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7604. (Contributed by Jim Kingdon, 29-Dec-2019.)
Assertion
Ref Expression
ltrnqg ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))

Proof of Theorem ltrnqg
StepHypRef Expression
1 recclnq 7575 . . . 4 (𝐴Q → (*Q𝐴) ∈ Q)
2 recclnq 7575 . . . 4 (𝐵Q → (*Q𝐵) ∈ Q)
3 mulclnq 7559 . . . 4 (((*Q𝐴) ∈ Q ∧ (*Q𝐵) ∈ Q) → ((*Q𝐴) ·Q (*Q𝐵)) ∈ Q)
41, 2, 3syl2an 289 . . 3 ((𝐴Q𝐵Q) → ((*Q𝐴) ·Q (*Q𝐵)) ∈ Q)
5 ltmnqg 7584 . . 3 ((𝐴Q𝐵Q ∧ ((*Q𝐴) ·Q (*Q𝐵)) ∈ Q) → (𝐴 <Q 𝐵 ↔ (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) <Q (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵)))
64, 5mpd3an3 1372 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) <Q (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵)))
7 simpl 109 . . . . . 6 ((𝐴Q𝐵Q) → 𝐴Q)
8 mulcomnqg 7566 . . . . . 6 ((((*Q𝐴) ·Q (*Q𝐵)) ∈ Q𝐴Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
94, 7, 8syl2anc 411 . . . . 5 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
101adantr 276 . . . . . 6 ((𝐴Q𝐵Q) → (*Q𝐴) ∈ Q)
112adantl 277 . . . . . 6 ((𝐴Q𝐵Q) → (*Q𝐵) ∈ Q)
12 mulassnqg 7567 . . . . . 6 ((𝐴Q ∧ (*Q𝐴) ∈ Q ∧ (*Q𝐵) ∈ Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
137, 10, 11, 12syl3anc 1271 . . . . 5 ((𝐴Q𝐵Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
14 mulclnq 7559 . . . . . . 7 ((𝐴Q ∧ (*Q𝐴) ∈ Q) → (𝐴 ·Q (*Q𝐴)) ∈ Q)
157, 10, 14syl2anc 411 . . . . . 6 ((𝐴Q𝐵Q) → (𝐴 ·Q (*Q𝐴)) ∈ Q)
16 mulcomnqg 7566 . . . . . 6 (((𝐴 ·Q (*Q𝐴)) ∈ Q ∧ (*Q𝐵) ∈ Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))))
1715, 11, 16syl2anc 411 . . . . 5 ((𝐴Q𝐵Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))))
189, 13, 173eqtr2d 2268 . . . 4 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))))
19 recidnq 7576 . . . . . 6 (𝐴Q → (𝐴 ·Q (*Q𝐴)) = 1Q)
2019oveq2d 6016 . . . . 5 (𝐴Q → ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))) = ((*Q𝐵) ·Q 1Q))
21 mulidnq 7572 . . . . . 6 ((*Q𝐵) ∈ Q → ((*Q𝐵) ·Q 1Q) = (*Q𝐵))
222, 21syl 14 . . . . 5 (𝐵Q → ((*Q𝐵) ·Q 1Q) = (*Q𝐵))
2320, 22sylan9eq 2282 . . . 4 ((𝐴Q𝐵Q) → ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))) = (*Q𝐵))
2418, 23eqtrd 2262 . . 3 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = (*Q𝐵))
25 simpr 110 . . . . 5 ((𝐴Q𝐵Q) → 𝐵Q)
26 mulassnqg 7567 . . . . 5 (((*Q𝐴) ∈ Q ∧ (*Q𝐵) ∈ Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) = ((*Q𝐴) ·Q ((*Q𝐵) ·Q 𝐵)))
2710, 11, 25, 26syl3anc 1271 . . . 4 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) = ((*Q𝐴) ·Q ((*Q𝐵) ·Q 𝐵)))
28 mulcomnqg 7566 . . . . . 6 (((*Q𝐵) ∈ Q𝐵Q) → ((*Q𝐵) ·Q 𝐵) = (𝐵 ·Q (*Q𝐵)))
2911, 25, 28syl2anc 411 . . . . 5 ((𝐴Q𝐵Q) → ((*Q𝐵) ·Q 𝐵) = (𝐵 ·Q (*Q𝐵)))
3029oveq2d 6016 . . . 4 ((𝐴Q𝐵Q) → ((*Q𝐴) ·Q ((*Q𝐵) ·Q 𝐵)) = ((*Q𝐴) ·Q (𝐵 ·Q (*Q𝐵))))
31 recidnq 7576 . . . . . 6 (𝐵Q → (𝐵 ·Q (*Q𝐵)) = 1Q)
3231oveq2d 6016 . . . . 5 (𝐵Q → ((*Q𝐴) ·Q (𝐵 ·Q (*Q𝐵))) = ((*Q𝐴) ·Q 1Q))
33 mulidnq 7572 . . . . . 6 ((*Q𝐴) ∈ Q → ((*Q𝐴) ·Q 1Q) = (*Q𝐴))
341, 33syl 14 . . . . 5 (𝐴Q → ((*Q𝐴) ·Q 1Q) = (*Q𝐴))
3532, 34sylan9eqr 2284 . . . 4 ((𝐴Q𝐵Q) → ((*Q𝐴) ·Q (𝐵 ·Q (*Q𝐵))) = (*Q𝐴))
3627, 30, 353eqtrd 2266 . . 3 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) = (*Q𝐴))
3724, 36breq12d 4095 . 2 ((𝐴Q𝐵Q) → ((((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) <Q (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) ↔ (*Q𝐵) <Q (*Q𝐴)))
386, 37bitrd 188 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  Qcnq 7463  1Qc1q 7464   ·Q cmq 7466  *Qcrq 7467   <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-lti 7490  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536
This theorem is referenced by:  ltrnqi  7604  recexprlemloc  7814  archrecnq  7846
  Copyright terms: Public domain W3C validator