ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrnqg GIF version

Theorem ltrnqg 7410
Description: Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7411. (Contributed by Jim Kingdon, 29-Dec-2019.)
Assertion
Ref Expression
ltrnqg ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))

Proof of Theorem ltrnqg
StepHypRef Expression
1 recclnq 7382 . . . 4 (𝐴Q → (*Q𝐴) ∈ Q)
2 recclnq 7382 . . . 4 (𝐵Q → (*Q𝐵) ∈ Q)
3 mulclnq 7366 . . . 4 (((*Q𝐴) ∈ Q ∧ (*Q𝐵) ∈ Q) → ((*Q𝐴) ·Q (*Q𝐵)) ∈ Q)
41, 2, 3syl2an 289 . . 3 ((𝐴Q𝐵Q) → ((*Q𝐴) ·Q (*Q𝐵)) ∈ Q)
5 ltmnqg 7391 . . 3 ((𝐴Q𝐵Q ∧ ((*Q𝐴) ·Q (*Q𝐵)) ∈ Q) → (𝐴 <Q 𝐵 ↔ (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) <Q (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵)))
64, 5mpd3an3 1338 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) <Q (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵)))
7 simpl 109 . . . . . 6 ((𝐴Q𝐵Q) → 𝐴Q)
8 mulcomnqg 7373 . . . . . 6 ((((*Q𝐴) ·Q (*Q𝐵)) ∈ Q𝐴Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
94, 7, 8syl2anc 411 . . . . 5 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
101adantr 276 . . . . . 6 ((𝐴Q𝐵Q) → (*Q𝐴) ∈ Q)
112adantl 277 . . . . . 6 ((𝐴Q𝐵Q) → (*Q𝐵) ∈ Q)
12 mulassnqg 7374 . . . . . 6 ((𝐴Q ∧ (*Q𝐴) ∈ Q ∧ (*Q𝐵) ∈ Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
137, 10, 11, 12syl3anc 1238 . . . . 5 ((𝐴Q𝐵Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = (𝐴 ·Q ((*Q𝐴) ·Q (*Q𝐵))))
14 mulclnq 7366 . . . . . . 7 ((𝐴Q ∧ (*Q𝐴) ∈ Q) → (𝐴 ·Q (*Q𝐴)) ∈ Q)
157, 10, 14syl2anc 411 . . . . . 6 ((𝐴Q𝐵Q) → (𝐴 ·Q (*Q𝐴)) ∈ Q)
16 mulcomnqg 7373 . . . . . 6 (((𝐴 ·Q (*Q𝐴)) ∈ Q ∧ (*Q𝐵) ∈ Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))))
1715, 11, 16syl2anc 411 . . . . 5 ((𝐴Q𝐵Q) → ((𝐴 ·Q (*Q𝐴)) ·Q (*Q𝐵)) = ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))))
189, 13, 173eqtr2d 2216 . . . 4 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))))
19 recidnq 7383 . . . . . 6 (𝐴Q → (𝐴 ·Q (*Q𝐴)) = 1Q)
2019oveq2d 5885 . . . . 5 (𝐴Q → ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))) = ((*Q𝐵) ·Q 1Q))
21 mulidnq 7379 . . . . . 6 ((*Q𝐵) ∈ Q → ((*Q𝐵) ·Q 1Q) = (*Q𝐵))
222, 21syl 14 . . . . 5 (𝐵Q → ((*Q𝐵) ·Q 1Q) = (*Q𝐵))
2320, 22sylan9eq 2230 . . . 4 ((𝐴Q𝐵Q) → ((*Q𝐵) ·Q (𝐴 ·Q (*Q𝐴))) = (*Q𝐵))
2418, 23eqtrd 2210 . . 3 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) = (*Q𝐵))
25 simpr 110 . . . . 5 ((𝐴Q𝐵Q) → 𝐵Q)
26 mulassnqg 7374 . . . . 5 (((*Q𝐴) ∈ Q ∧ (*Q𝐵) ∈ Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) = ((*Q𝐴) ·Q ((*Q𝐵) ·Q 𝐵)))
2710, 11, 25, 26syl3anc 1238 . . . 4 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) = ((*Q𝐴) ·Q ((*Q𝐵) ·Q 𝐵)))
28 mulcomnqg 7373 . . . . . 6 (((*Q𝐵) ∈ Q𝐵Q) → ((*Q𝐵) ·Q 𝐵) = (𝐵 ·Q (*Q𝐵)))
2911, 25, 28syl2anc 411 . . . . 5 ((𝐴Q𝐵Q) → ((*Q𝐵) ·Q 𝐵) = (𝐵 ·Q (*Q𝐵)))
3029oveq2d 5885 . . . 4 ((𝐴Q𝐵Q) → ((*Q𝐴) ·Q ((*Q𝐵) ·Q 𝐵)) = ((*Q𝐴) ·Q (𝐵 ·Q (*Q𝐵))))
31 recidnq 7383 . . . . . 6 (𝐵Q → (𝐵 ·Q (*Q𝐵)) = 1Q)
3231oveq2d 5885 . . . . 5 (𝐵Q → ((*Q𝐴) ·Q (𝐵 ·Q (*Q𝐵))) = ((*Q𝐴) ·Q 1Q))
33 mulidnq 7379 . . . . . 6 ((*Q𝐴) ∈ Q → ((*Q𝐴) ·Q 1Q) = (*Q𝐴))
341, 33syl 14 . . . . 5 (𝐴Q → ((*Q𝐴) ·Q 1Q) = (*Q𝐴))
3532, 34sylan9eqr 2232 . . . 4 ((𝐴Q𝐵Q) → ((*Q𝐴) ·Q (𝐵 ·Q (*Q𝐵))) = (*Q𝐴))
3627, 30, 353eqtrd 2214 . . 3 ((𝐴Q𝐵Q) → (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) = (*Q𝐴))
3724, 36breq12d 4013 . 2 ((𝐴Q𝐵Q) → ((((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐴) <Q (((*Q𝐴) ·Q (*Q𝐵)) ·Q 𝐵) ↔ (*Q𝐵) <Q (*Q𝐴)))
386, 37bitrd 188 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  Qcnq 7270  1Qc1q 7271   ·Q cmq 7273  *Qcrq 7274   <Q cltq 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-lti 7297  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343
This theorem is referenced by:  ltrnqi  7411  recexprlemloc  7621  archrecnq  7653
  Copyright terms: Public domain W3C validator