Proof of Theorem ltrnqg
| Step | Hyp | Ref
| Expression |
| 1 | | recclnq 7476 |
. . . 4
⊢ (𝐴 ∈ Q →
(*Q‘𝐴) ∈ Q) |
| 2 | | recclnq 7476 |
. . . 4
⊢ (𝐵 ∈ Q →
(*Q‘𝐵) ∈ Q) |
| 3 | | mulclnq 7460 |
. . . 4
⊢
(((*Q‘𝐴) ∈ Q ∧
(*Q‘𝐵) ∈ Q) →
((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q) |
| 4 | 1, 2, 3 | syl2an 289 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q) |
| 5 | | ltmnqg 7485 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ ((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q) → (𝐴 <Q
𝐵 ↔
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) <Q
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵))) |
| 6 | 4, 5 | mpd3an3 1349 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ↔
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) <Q
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵))) |
| 7 | | simpl 109 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ 𝐴 ∈
Q) |
| 8 | | mulcomnqg 7467 |
. . . . . 6
⊢
((((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q ∧ 𝐴 ∈ Q) →
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) |
| 9 | 4, 7, 8 | syl2anc 411 |
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) |
| 10 | 1 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (*Q‘𝐴) ∈ Q) |
| 11 | 2 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (*Q‘𝐵) ∈ Q) |
| 12 | | mulassnqg 7468 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
(*Q‘𝐴) ∈ Q ∧
(*Q‘𝐵) ∈ Q) → ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) |
| 13 | 7, 10, 11, 12 | syl3anc 1249 |
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) |
| 14 | | mulclnq 7460 |
. . . . . . 7
⊢ ((𝐴 ∈ Q ∧
(*Q‘𝐴) ∈ Q) → (𝐴
·Q (*Q‘𝐴)) ∈
Q) |
| 15 | 7, 10, 14 | syl2anc 411 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
·Q (*Q‘𝐴)) ∈
Q) |
| 16 | | mulcomnqg 7467 |
. . . . . 6
⊢ (((𝐴
·Q (*Q‘𝐴)) ∈ Q ∧
(*Q‘𝐵) ∈ Q) → ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) =
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴)))) |
| 17 | 15, 11, 16 | syl2anc 411 |
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) =
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴)))) |
| 18 | 9, 13, 17 | 3eqtr2d 2235 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) =
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴)))) |
| 19 | | recidnq 7477 |
. . . . . 6
⊢ (𝐴 ∈ Q →
(𝐴
·Q (*Q‘𝐴)) =
1Q) |
| 20 | 19 | oveq2d 5941 |
. . . . 5
⊢ (𝐴 ∈ Q →
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴))) =
((*Q‘𝐵) ·Q
1Q)) |
| 21 | | mulidnq 7473 |
. . . . . 6
⊢
((*Q‘𝐵) ∈ Q →
((*Q‘𝐵) ·Q
1Q) = (*Q‘𝐵)) |
| 22 | 2, 21 | syl 14 |
. . . . 5
⊢ (𝐵 ∈ Q →
((*Q‘𝐵) ·Q
1Q) = (*Q‘𝐵)) |
| 23 | 20, 22 | sylan9eq 2249 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴))) =
(*Q‘𝐵)) |
| 24 | 18, 23 | eqtrd 2229 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) =
(*Q‘𝐵)) |
| 25 | | simpr 110 |
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ 𝐵 ∈
Q) |
| 26 | | mulassnqg 7468 |
. . . . 5
⊢
(((*Q‘𝐴) ∈ Q ∧
(*Q‘𝐵) ∈ Q ∧ 𝐵 ∈ Q) →
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) =
((*Q‘𝐴) ·Q
((*Q‘𝐵) ·Q 𝐵))) |
| 27 | 10, 11, 25, 26 | syl3anc 1249 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) =
((*Q‘𝐴) ·Q
((*Q‘𝐵) ·Q 𝐵))) |
| 28 | | mulcomnqg 7467 |
. . . . . 6
⊢
(((*Q‘𝐵) ∈ Q ∧ 𝐵 ∈ Q) →
((*Q‘𝐵) ·Q 𝐵) = (𝐵 ·Q
(*Q‘𝐵))) |
| 29 | 11, 25, 28 | syl2anc 411 |
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐵) ·Q 𝐵) = (𝐵 ·Q
(*Q‘𝐵))) |
| 30 | 29 | oveq2d 5941 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐴) ·Q
((*Q‘𝐵) ·Q 𝐵)) =
((*Q‘𝐴) ·Q (𝐵
·Q (*Q‘𝐵)))) |
| 31 | | recidnq 7477 |
. . . . . 6
⊢ (𝐵 ∈ Q →
(𝐵
·Q (*Q‘𝐵)) =
1Q) |
| 32 | 31 | oveq2d 5941 |
. . . . 5
⊢ (𝐵 ∈ Q →
((*Q‘𝐴) ·Q (𝐵
·Q (*Q‘𝐵))) =
((*Q‘𝐴) ·Q
1Q)) |
| 33 | | mulidnq 7473 |
. . . . . 6
⊢
((*Q‘𝐴) ∈ Q →
((*Q‘𝐴) ·Q
1Q) = (*Q‘𝐴)) |
| 34 | 1, 33 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ Q →
((*Q‘𝐴) ·Q
1Q) = (*Q‘𝐴)) |
| 35 | 32, 34 | sylan9eqr 2251 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐴) ·Q (𝐵
·Q (*Q‘𝐵))) =
(*Q‘𝐴)) |
| 36 | 27, 30, 35 | 3eqtrd 2233 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) =
(*Q‘𝐴)) |
| 37 | 24, 36 | breq12d 4047 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) <Q
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) ↔
(*Q‘𝐵) <Q
(*Q‘𝐴))) |
| 38 | 6, 37 | bitrd 188 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ↔
(*Q‘𝐵) <Q
(*Q‘𝐴))) |