Proof of Theorem ltrnqg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | recclnq 7459 | 
. . . 4
⊢ (𝐴 ∈ Q →
(*Q‘𝐴) ∈ Q) | 
| 2 |   | recclnq 7459 | 
. . . 4
⊢ (𝐵 ∈ Q →
(*Q‘𝐵) ∈ Q) | 
| 3 |   | mulclnq 7443 | 
. . . 4
⊢
(((*Q‘𝐴) ∈ Q ∧
(*Q‘𝐵) ∈ Q) →
((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q) | 
| 4 | 1, 2, 3 | syl2an 289 | 
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q) | 
| 5 |   | ltmnqg 7468 | 
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ ((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q) → (𝐴 <Q
𝐵 ↔
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) <Q
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵))) | 
| 6 | 4, 5 | mpd3an3 1349 | 
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ↔
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) <Q
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵))) | 
| 7 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ 𝐴 ∈
Q) | 
| 8 |   | mulcomnqg 7450 | 
. . . . . 6
⊢
((((*Q‘𝐴) ·Q
(*Q‘𝐵)) ∈ Q ∧ 𝐴 ∈ Q) →
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) | 
| 9 | 4, 7, 8 | syl2anc 411 | 
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) | 
| 10 | 1 | adantr 276 | 
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (*Q‘𝐴) ∈ Q) | 
| 11 | 2 | adantl 277 | 
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (*Q‘𝐵) ∈ Q) | 
| 12 |   | mulassnqg 7451 | 
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
(*Q‘𝐴) ∈ Q ∧
(*Q‘𝐵) ∈ Q) → ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) | 
| 13 | 7, 10, 11, 12 | syl3anc 1249 | 
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) = (𝐴 ·Q
((*Q‘𝐴) ·Q
(*Q‘𝐵)))) | 
| 14 |   | mulclnq 7443 | 
. . . . . . 7
⊢ ((𝐴 ∈ Q ∧
(*Q‘𝐴) ∈ Q) → (𝐴
·Q (*Q‘𝐴)) ∈
Q) | 
| 15 | 7, 10, 14 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
·Q (*Q‘𝐴)) ∈
Q) | 
| 16 |   | mulcomnqg 7450 | 
. . . . . 6
⊢ (((𝐴
·Q (*Q‘𝐴)) ∈ Q ∧
(*Q‘𝐵) ∈ Q) → ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) =
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴)))) | 
| 17 | 15, 11, 16 | syl2anc 411 | 
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((𝐴
·Q (*Q‘𝐴))
·Q (*Q‘𝐵)) =
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴)))) | 
| 18 | 9, 13, 17 | 3eqtr2d 2235 | 
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) =
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴)))) | 
| 19 |   | recidnq 7460 | 
. . . . . 6
⊢ (𝐴 ∈ Q →
(𝐴
·Q (*Q‘𝐴)) =
1Q) | 
| 20 | 19 | oveq2d 5938 | 
. . . . 5
⊢ (𝐴 ∈ Q →
((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴))) =
((*Q‘𝐵) ·Q
1Q)) | 
| 21 |   | mulidnq 7456 | 
. . . . . 6
⊢
((*Q‘𝐵) ∈ Q →
((*Q‘𝐵) ·Q
1Q) = (*Q‘𝐵)) | 
| 22 | 2, 21 | syl 14 | 
. . . . 5
⊢ (𝐵 ∈ Q →
((*Q‘𝐵) ·Q
1Q) = (*Q‘𝐵)) | 
| 23 | 20, 22 | sylan9eq 2249 | 
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐵) ·Q (𝐴
·Q (*Q‘𝐴))) =
(*Q‘𝐵)) | 
| 24 | 18, 23 | eqtrd 2229 | 
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) =
(*Q‘𝐵)) | 
| 25 |   | simpr 110 | 
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ 𝐵 ∈
Q) | 
| 26 |   | mulassnqg 7451 | 
. . . . 5
⊢
(((*Q‘𝐴) ∈ Q ∧
(*Q‘𝐵) ∈ Q ∧ 𝐵 ∈ Q) →
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) =
((*Q‘𝐴) ·Q
((*Q‘𝐵) ·Q 𝐵))) | 
| 27 | 10, 11, 25, 26 | syl3anc 1249 | 
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) =
((*Q‘𝐴) ·Q
((*Q‘𝐵) ·Q 𝐵))) | 
| 28 |   | mulcomnqg 7450 | 
. . . . . 6
⊢
(((*Q‘𝐵) ∈ Q ∧ 𝐵 ∈ Q) →
((*Q‘𝐵) ·Q 𝐵) = (𝐵 ·Q
(*Q‘𝐵))) | 
| 29 | 11, 25, 28 | syl2anc 411 | 
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐵) ·Q 𝐵) = (𝐵 ·Q
(*Q‘𝐵))) | 
| 30 | 29 | oveq2d 5938 | 
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐴) ·Q
((*Q‘𝐵) ·Q 𝐵)) =
((*Q‘𝐴) ·Q (𝐵
·Q (*Q‘𝐵)))) | 
| 31 |   | recidnq 7460 | 
. . . . . 6
⊢ (𝐵 ∈ Q →
(𝐵
·Q (*Q‘𝐵)) =
1Q) | 
| 32 | 31 | oveq2d 5938 | 
. . . . 5
⊢ (𝐵 ∈ Q →
((*Q‘𝐴) ·Q (𝐵
·Q (*Q‘𝐵))) =
((*Q‘𝐴) ·Q
1Q)) | 
| 33 |   | mulidnq 7456 | 
. . . . . 6
⊢
((*Q‘𝐴) ∈ Q →
((*Q‘𝐴) ·Q
1Q) = (*Q‘𝐴)) | 
| 34 | 1, 33 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ Q →
((*Q‘𝐴) ·Q
1Q) = (*Q‘𝐴)) | 
| 35 | 32, 34 | sylan9eqr 2251 | 
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((*Q‘𝐴) ·Q (𝐵
·Q (*Q‘𝐵))) =
(*Q‘𝐴)) | 
| 36 | 27, 30, 35 | 3eqtrd 2233 | 
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) =
(*Q‘𝐴)) | 
| 37 | 24, 36 | breq12d 4046 | 
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ((((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐴) <Q
(((*Q‘𝐴) ·Q
(*Q‘𝐵)) ·Q 𝐵) ↔
(*Q‘𝐵) <Q
(*Q‘𝐴))) | 
| 38 | 6, 37 | bitrd 188 | 
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ↔
(*Q‘𝐵) <Q
(*Q‘𝐴))) |