Proof of Theorem pclemub
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnssz 9343 | 
. 2
⊢ ℕ
⊆ ℤ | 
| 2 |   | zcn 9331 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 3 | 2 | abscld 11346 | 
. . . . 5
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℝ) | 
| 4 | 3 | ad2antrl 490 | 
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈
ℝ) | 
| 5 |   | eluzelre 9611 | 
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℝ) | 
| 6 | 5 | adantr 276 | 
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ) | 
| 7 |   | eluz2gt1 9676 | 
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) → 1 < 𝑃) | 
| 8 | 7 | adantr 276 | 
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃) | 
| 9 |   | expnbnd 10755 | 
. . . 4
⊢
(((abs‘𝑁)
∈ ℝ ∧ 𝑃
∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃↑𝑥)) | 
| 10 | 4, 6, 8, 9 | syl3anc 1249 | 
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃↑𝑥)) | 
| 11 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | 
| 12 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑦 → (𝑃↑𝑛) = (𝑃↑𝑦)) | 
| 13 | 12 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑦) ∥ 𝑁)) | 
| 14 |   | pclem.1 | 
. . . . . . . . . . . . 13
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | 
| 15 | 13, 14 | elrab2 2923 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃↑𝑦) ∥ 𝑁)) | 
| 16 | 11, 15 | sylib 122 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃↑𝑦) ∥ 𝑁)) | 
| 17 | 16 | simprd 114 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∥ 𝑁) | 
| 18 |   | eluz2nn 9640 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) | 
| 19 | 18 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑃 ∈ ℕ) | 
| 20 | 16 | simpld 112 | 
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℕ0) | 
| 21 | 19, 20 | nnexpcld 10787 | 
. . . . . . . . . . . 12
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∈ ℕ) | 
| 22 | 21 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∈ ℤ) | 
| 23 |   | simplrl 535 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑁 ∈ ℤ) | 
| 24 |   | simplrr 536 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑁 ≠ 0) | 
| 25 |   | dvdsleabs 12010 | 
. . . . . . . . . . 11
⊢ (((𝑃↑𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃↑𝑦) ∥ 𝑁 → (𝑃↑𝑦) ≤ (abs‘𝑁))) | 
| 26 | 22, 23, 24, 25 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((𝑃↑𝑦) ∥ 𝑁 → (𝑃↑𝑦) ≤ (abs‘𝑁))) | 
| 27 | 17, 26 | mpd 13 | 
. . . . . . . . 9
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ≤ (abs‘𝑁)) | 
| 28 | 21 | nnred 9003 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∈ ℝ) | 
| 29 | 4 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (abs‘𝑁) ∈ ℝ) | 
| 30 | 5 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑃 ∈ ℝ) | 
| 31 |   | nnnn0 9256 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) | 
| 32 | 31 | ad2antrl 490 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℕ0) | 
| 33 | 30, 32 | reexpcld 10782 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑥) ∈ ℝ) | 
| 34 |   | lelttr 8115 | 
. . . . . . . . . 10
⊢ (((𝑃↑𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃↑𝑥) ∈ ℝ) → (((𝑃↑𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃↑𝑥)) → (𝑃↑𝑦) < (𝑃↑𝑥))) | 
| 35 | 28, 29, 33, 34 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (((𝑃↑𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃↑𝑥)) → (𝑃↑𝑦) < (𝑃↑𝑥))) | 
| 36 | 27, 35 | mpand 429 | 
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((abs‘𝑁) < (𝑃↑𝑥) → (𝑃↑𝑦) < (𝑃↑𝑥))) | 
| 37 | 7 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 1 < 𝑃) | 
| 38 |   | nn0ltexp2 10801 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℝ ∧ 𝑦 ∈ ℕ0
∧ 𝑥 ∈
ℕ0) ∧ 1 < 𝑃) → (𝑦 < 𝑥 ↔ (𝑃↑𝑦) < (𝑃↑𝑥))) | 
| 39 | 30, 20, 32, 37, 38 | syl31anc 1252 | 
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦 < 𝑥 ↔ (𝑃↑𝑦) < (𝑃↑𝑥))) | 
| 40 | 36, 39 | sylibrd 169 | 
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((abs‘𝑁) < (𝑃↑𝑥) → 𝑦 < 𝑥)) | 
| 41 | 20 | nn0red 9303 | 
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) | 
| 42 |   | nnre 8997 | 
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) | 
| 43 | 42 | ad2antrl 490 | 
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) | 
| 44 |   | ltle 8114 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 → 𝑦 ≤ 𝑥)) | 
| 45 | 41, 43, 44 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦 < 𝑥 → 𝑦 ≤ 𝑥)) | 
| 46 | 40, 45 | syld 45 | 
. . . . . 6
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((abs‘𝑁) < (𝑃↑𝑥) → 𝑦 ≤ 𝑥)) | 
| 47 | 46 | anassrs 400 | 
. . . . 5
⊢ ((((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ 𝐴) → ((abs‘𝑁) < (𝑃↑𝑥) → 𝑦 ≤ 𝑥)) | 
| 48 | 47 | ralrimdva 2577 | 
. . . 4
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃↑𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | 
| 49 | 48 | reximdva 2599 | 
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃↑𝑥) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | 
| 50 | 10, 49 | mpd 13 | 
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 51 |   | ssrexv 3248 | 
. 2
⊢ (ℕ
⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | 
| 52 | 1, 50, 51 | mpsyl 65 | 
1
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |