Proof of Theorem pclemub
Step | Hyp | Ref
| Expression |
1 | | nnssz 9229 |
. 2
⊢ ℕ
⊆ ℤ |
2 | | zcn 9217 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
3 | 2 | abscld 11145 |
. . . . 5
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℝ) |
4 | 3 | ad2antrl 487 |
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈
ℝ) |
5 | | eluzelre 9497 |
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℝ) |
6 | 5 | adantr 274 |
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ) |
7 | | eluz2gt1 9561 |
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) → 1 < 𝑃) |
8 | 7 | adantr 274 |
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃) |
9 | | expnbnd 10599 |
. . . 4
⊢
(((abs‘𝑁)
∈ ℝ ∧ 𝑃
∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃↑𝑥)) |
10 | 4, 6, 8, 9 | syl3anc 1233 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃↑𝑥)) |
11 | | simprr 527 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
12 | | oveq2 5861 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑦 → (𝑃↑𝑛) = (𝑃↑𝑦)) |
13 | 12 | breq1d 3999 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑦) ∥ 𝑁)) |
14 | | pclem.1 |
. . . . . . . . . . . . 13
⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
15 | 13, 14 | elrab2 2889 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃↑𝑦) ∥ 𝑁)) |
16 | 11, 15 | sylib 121 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃↑𝑦) ∥ 𝑁)) |
17 | 16 | simprd 113 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∥ 𝑁) |
18 | | eluz2nn 9525 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
19 | 18 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑃 ∈ ℕ) |
20 | 16 | simpld 111 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℕ0) |
21 | 19, 20 | nnexpcld 10631 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∈ ℕ) |
22 | 21 | nnzd 9333 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∈ ℤ) |
23 | | simplrl 530 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑁 ∈ ℤ) |
24 | | simplrr 531 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑁 ≠ 0) |
25 | | dvdsleabs 11805 |
. . . . . . . . . . 11
⊢ (((𝑃↑𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃↑𝑦) ∥ 𝑁 → (𝑃↑𝑦) ≤ (abs‘𝑁))) |
26 | 22, 23, 24, 25 | syl3anc 1233 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((𝑃↑𝑦) ∥ 𝑁 → (𝑃↑𝑦) ≤ (abs‘𝑁))) |
27 | 17, 26 | mpd 13 |
. . . . . . . . 9
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ≤ (abs‘𝑁)) |
28 | 21 | nnred 8891 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑦) ∈ ℝ) |
29 | 4 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (abs‘𝑁) ∈ ℝ) |
30 | 5 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑃 ∈ ℝ) |
31 | | nnnn0 9142 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
32 | 31 | ad2antrl 487 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℕ0) |
33 | 30, 32 | reexpcld 10626 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑃↑𝑥) ∈ ℝ) |
34 | | lelttr 8008 |
. . . . . . . . . 10
⊢ (((𝑃↑𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃↑𝑥) ∈ ℝ) → (((𝑃↑𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃↑𝑥)) → (𝑃↑𝑦) < (𝑃↑𝑥))) |
35 | 28, 29, 33, 34 | syl3anc 1233 |
. . . . . . . . 9
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (((𝑃↑𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃↑𝑥)) → (𝑃↑𝑦) < (𝑃↑𝑥))) |
36 | 27, 35 | mpand 427 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((abs‘𝑁) < (𝑃↑𝑥) → (𝑃↑𝑦) < (𝑃↑𝑥))) |
37 | 7 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 1 < 𝑃) |
38 | | nn0ltexp2 10644 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℝ ∧ 𝑦 ∈ ℕ0
∧ 𝑥 ∈
ℕ0) ∧ 1 < 𝑃) → (𝑦 < 𝑥 ↔ (𝑃↑𝑦) < (𝑃↑𝑥))) |
39 | 30, 20, 32, 37, 38 | syl31anc 1236 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦 < 𝑥 ↔ (𝑃↑𝑦) < (𝑃↑𝑥))) |
40 | 36, 39 | sylibrd 168 |
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((abs‘𝑁) < (𝑃↑𝑥) → 𝑦 < 𝑥)) |
41 | 20 | nn0red 9189 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
42 | | nnre 8885 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
43 | 42 | ad2antrl 487 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
44 | | ltle 8007 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 → 𝑦 ≤ 𝑥)) |
45 | 41, 43, 44 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → (𝑦 < 𝑥 → 𝑦 ≤ 𝑥)) |
46 | 40, 45 | syld 45 |
. . . . . 6
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴)) → ((abs‘𝑁) < (𝑃↑𝑥) → 𝑦 ≤ 𝑥)) |
47 | 46 | anassrs 398 |
. . . . 5
⊢ ((((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦 ∈ 𝐴) → ((abs‘𝑁) < (𝑃↑𝑥) → 𝑦 ≤ 𝑥)) |
48 | 47 | ralrimdva 2550 |
. . . 4
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃↑𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
49 | 48 | reximdva 2572 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃↑𝑥) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
50 | 10, 49 | mpd 13 |
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
51 | | ssrexv 3212 |
. 2
⊢ (ℕ
⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
52 | 1, 50, 51 | mpsyl 65 |
1
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |