ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclemub GIF version

Theorem pclemub 12456
Description: Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
Hypothesis
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
Assertion
Ref Expression
pclemub ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
Distinct variable groups:   𝑛,𝑁,𝑦   𝑥,𝑁,𝑦   𝑃,𝑛,𝑦   𝑥,𝑃
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑛)

Proof of Theorem pclemub
StepHypRef Expression
1 nnssz 9343 . 2 ℕ ⊆ ℤ
2 zcn 9331 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32abscld 11346 . . . . 5 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
43ad2antrl 490 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℝ)
5 eluzelre 9611 . . . . 5 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
65adantr 276 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ)
7 eluz2gt1 9676 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
87adantr 276 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃)
9 expnbnd 10755 . . . 4 (((abs‘𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
104, 6, 8, 9syl3anc 1249 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
11 simprr 531 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
12 oveq2 5930 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → (𝑃𝑛) = (𝑃𝑦))
1312breq1d 4043 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑦) ∥ 𝑁))
14 pclem.1 . . . . . . . . . . . . 13 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
1513, 14elrab2 2923 . . . . . . . . . . . 12 (𝑦𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
1611, 15sylib 122 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
1716simprd 114 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∥ 𝑁)
18 eluz2nn 9640 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
1918ad2antrr 488 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℕ)
2016simpld 112 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ0)
2119, 20nnexpcld 10787 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℕ)
2221nnzd 9447 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℤ)
23 simplrl 535 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ∈ ℤ)
24 simplrr 536 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ≠ 0)
25 dvdsleabs 12010 . . . . . . . . . . 11 (((𝑃𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
2622, 23, 24, 25syl3anc 1249 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
2717, 26mpd 13 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ≤ (abs‘𝑁))
2821nnred 9003 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℝ)
294adantr 276 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑁) ∈ ℝ)
305ad2antrr 488 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℝ)
31 nnnn0 9256 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
3231ad2antrl 490 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ0)
3330, 32reexpcld 10782 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑥) ∈ ℝ)
34 lelttr 8115 . . . . . . . . . 10 (((𝑃𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃𝑥) ∈ ℝ) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
3528, 29, 33, 34syl3anc 1249 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
3627, 35mpand 429 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → (𝑃𝑦) < (𝑃𝑥)))
377ad2antrr 488 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 1 < 𝑃)
38 nn0ltexp2 10801 . . . . . . . . 9 (((𝑃 ∈ ℝ ∧ 𝑦 ∈ ℕ0𝑥 ∈ ℕ0) ∧ 1 < 𝑃) → (𝑦 < 𝑥 ↔ (𝑃𝑦) < (𝑃𝑥)))
3930, 20, 32, 37, 38syl31anc 1252 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥 ↔ (𝑃𝑦) < (𝑃𝑥)))
4036, 39sylibrd 169 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦 < 𝑥))
4120nn0red 9303 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
42 nnre 8997 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
4342ad2antrl 490 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ)
44 ltle 8114 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦𝑥))
4541, 43, 44syl2anc 411 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥𝑦𝑥))
4640, 45syld 45 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
4746anassrs 400 . . . . 5 ((((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦𝐴) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
4847ralrimdva 2577 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃𝑥) → ∀𝑦𝐴 𝑦𝑥))
4948reximdva 2599 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥))
5010, 49mpd 13 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
51 ssrexv 3248 . 2 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
521, 50, 51mpsyl 65 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {crab 2479  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   < clt 8061  cle 8062  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cexp 10630  abscabs 11162  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953
This theorem is referenced by:  pcprecl  12458  pcprendvds  12459  pcpremul  12462
  Copyright terms: Public domain W3C validator