ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 GIF version

Theorem expnlbnd2 10823
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10822 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴)
2 simpl2 1004 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ)
3 simpl3 1005 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 < 𝐵)
4 1re 8084 . . . . . . . . . 10 1 ∈ ℝ
5 ltle 8173 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → 1 ≤ 𝐵))
64, 2, 5sylancr 414 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 < 𝐵 → 1 ≤ 𝐵))
73, 6mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ≤ 𝐵)
8 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
9 leexp2a 10750 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝑘 ∈ (ℤ𝑗)) → (𝐵𝑗) ≤ (𝐵𝑘))
102, 7, 8, 9syl3anc 1250 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ≤ (𝐵𝑘))
11 0red 8086 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
12 1red 8100 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ∈ ℝ)
13 0lt1 8212 . . . . . . . . . . . 12 0 < 1
1413a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 1)
1511, 12, 2, 14, 3lttrd 8211 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 𝐵)
162, 15elrpd 9828 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
17 nnz 9404 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1817ad2antrl 490 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
19 rpexpcl 10716 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑗 ∈ ℤ) → (𝐵𝑗) ∈ ℝ+)
2016, 18, 19syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
21 eluzelz 9670 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
2221ad2antll 491 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ ℤ)
23 rpexpcl 10716 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
2416, 22, 23syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑘) ∈ ℝ+)
2520, 24lerecd 9851 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝐵𝑗) ≤ (𝐵𝑘) ↔ (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗))))
2610, 25mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)))
2724rprecred 9843 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ∈ ℝ)
2820rprecred 9843 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑗)) ∈ ℝ)
29 simpl1 1003 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ+)
3029rpred 9831 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ)
31 lelttr 8174 . . . . . . 7 (((1 / (𝐵𝑘)) ∈ ℝ ∧ (1 / (𝐵𝑗)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3227, 28, 30, 31syl3anc 1250 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3326, 32mpand 429 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3433anassrs 400 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3534ralrimdva 2587 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) → ((1 / (𝐵𝑗)) < 𝐴 → ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
3635reximdva 2609 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
371, 36mpd 13 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2177  wral 2485  wrex 2486   class class class wbr 4048  cfv 5277  (class class class)co 5954  cr 7937  0cc0 7938  1c1 7939   < clt 8120  cle 8121   / cdiv 8758  cn 9049  cz 9385  cuz 9661  +crp 9788  cexp 10696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-rp 9789  df-seqfrec 10606  df-exp 10697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator