ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 GIF version

Theorem expnlbnd2 10874
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10873 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴)
2 simpl2 1025 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ)
3 simpl3 1026 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 < 𝐵)
4 1re 8133 . . . . . . . . . 10 1 ∈ ℝ
5 ltle 8222 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → 1 ≤ 𝐵))
64, 2, 5sylancr 414 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 < 𝐵 → 1 ≤ 𝐵))
73, 6mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ≤ 𝐵)
8 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
9 leexp2a 10801 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝑘 ∈ (ℤ𝑗)) → (𝐵𝑗) ≤ (𝐵𝑘))
102, 7, 8, 9syl3anc 1271 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ≤ (𝐵𝑘))
11 0red 8135 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
12 1red 8149 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ∈ ℝ)
13 0lt1 8261 . . . . . . . . . . . 12 0 < 1
1413a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 1)
1511, 12, 2, 14, 3lttrd 8260 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 𝐵)
162, 15elrpd 9877 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
17 nnz 9453 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1817ad2antrl 490 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
19 rpexpcl 10767 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑗 ∈ ℤ) → (𝐵𝑗) ∈ ℝ+)
2016, 18, 19syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
21 eluzelz 9719 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
2221ad2antll 491 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ ℤ)
23 rpexpcl 10767 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
2416, 22, 23syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑘) ∈ ℝ+)
2520, 24lerecd 9900 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝐵𝑗) ≤ (𝐵𝑘) ↔ (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗))))
2610, 25mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)))
2724rprecred 9892 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ∈ ℝ)
2820rprecred 9892 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑗)) ∈ ℝ)
29 simpl1 1024 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ+)
3029rpred 9880 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ)
31 lelttr 8223 . . . . . . 7 (((1 / (𝐵𝑘)) ∈ ℝ ∧ (1 / (𝐵𝑗)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3227, 28, 30, 31syl3anc 1271 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3326, 32mpand 429 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3433anassrs 400 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3534ralrimdva 2610 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) → ((1 / (𝐵𝑗)) < 𝐴 → ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
3635reximdva 2632 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
371, 36mpd 13 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  cfv 5314  (class class class)co 5994  cr 7986  0cc0 7987  1c1 7988   < clt 8169  cle 8170   / cdiv 8807  cn 9098  cz 9434  cuz 9710  +crp 9837  cexp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-seqfrec 10657  df-exp 10748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator