ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 GIF version

Theorem expnlbnd2 10079
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10078 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴)
2 simpl2 947 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ)
3 simpl3 948 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 < 𝐵)
4 1re 7487 . . . . . . . . . 10 1 ∈ ℝ
5 ltle 7572 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → 1 ≤ 𝐵))
64, 2, 5sylancr 405 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 < 𝐵 → 1 ≤ 𝐵))
73, 6mpd 13 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ≤ 𝐵)
8 simprr 499 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
9 leexp2a 10008 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝑘 ∈ (ℤ𝑗)) → (𝐵𝑗) ≤ (𝐵𝑘))
102, 7, 8, 9syl3anc 1174 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ≤ (𝐵𝑘))
11 0red 7489 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
12 1red 7503 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ∈ ℝ)
13 0lt1 7610 . . . . . . . . . . . 12 0 < 1
1413a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 1)
1511, 12, 2, 14, 3lttrd 7609 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 𝐵)
162, 15elrpd 9171 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
17 nnz 8769 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1817ad2antrl 474 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
19 rpexpcl 9974 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑗 ∈ ℤ) → (𝐵𝑗) ∈ ℝ+)
2016, 18, 19syl2anc 403 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
21 eluzelz 9028 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
2221ad2antll 475 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ ℤ)
23 rpexpcl 9974 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
2416, 22, 23syl2anc 403 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑘) ∈ ℝ+)
2520, 24lerecd 9193 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝐵𝑗) ≤ (𝐵𝑘) ↔ (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗))))
2610, 25mpbid 145 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)))
2724rprecred 9185 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ∈ ℝ)
2820rprecred 9185 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑗)) ∈ ℝ)
29 simpl1 946 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ+)
3029rpred 9173 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ)
31 lelttr 7573 . . . . . . 7 (((1 / (𝐵𝑘)) ∈ ℝ ∧ (1 / (𝐵𝑗)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3227, 28, 30, 31syl3anc 1174 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3326, 32mpand 420 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3433anassrs 392 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3534ralrimdva 2453 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) → ((1 / (𝐵𝑗)) < 𝐴 → ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
3635reximdva 2475 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
371, 36mpd 13 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924  wcel 1438  wral 2359  wrex 2360   class class class wbr 3845  cfv 5015  (class class class)co 5652  cr 7349  0cc0 7350  1c1 7351   < clt 7522  cle 7523   / cdiv 8139  cn 8422  cz 8750  cuz 9019  +crp 9134  cexp 9954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-rp 9135  df-iseq 9853  df-seq3 9854  df-exp 9955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator