HomeHome Intuitionistic Logic Explorer
Theorem List (p. 126 of 134)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12501-12600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhmeocnvb 12501 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
 
Theoremtxhmeo 12502* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐽Homeo𝐿))    &   (𝜑𝐺 ∈ (𝐾Homeo𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀)))
 
Theoremtxswaphmeolem 12503* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
 
Theoremtxswaphmeo 12504* There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
 
7.2  Metric spaces
 
7.2.1  Pseudometric spaces
 
Theorempsmetrel 12505 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Rel PsMet
 
Theoremispsmet 12506* Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theorempsmetdmdm 12507 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theorempsmetf 12508 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theorempsmetcl 12509 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theorempsmet0 12510 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theorempsmettri2 12511 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetsym 12512 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theorempsmettri 12513 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetge0 12514 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theorempsmetxrge0 12515 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
 
Theorempsmetres2 12516 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅))
 
Theorempsmetlecl 12517 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremdistspace 12518 A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴))))
 
7.2.2  Basic metric space properties
 
Syntaxcxms 12519 Extend class notation with the class of extended metric spaces.
class ∞MetSp
 
Syntaxcms 12520 Extend class notation with the class of metric spaces.
class MetSp
 
Syntaxctms 12521 Extend class notation with the function mapping a metric to the metric space it defines.
class toMetSp
 
Definitiondf-xms 12522 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
 
Definitiondf-ms 12523 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
 
Definitiondf-tms 12524 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
 
Theoremmetrel 12525 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Rel Met
 
Theoremxmetrel 12526 The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Rel ∞Met
 
Theoremismet 12527* Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝑋𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
 
Theoremisxmet 12528* Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝑋𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theoremismeti 12529* Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
𝑋 ∈ V    &   𝐷:(𝑋 × 𝑋)⟶ℝ    &   ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))    &   ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))       𝐷 ∈ (Met‘𝑋)
 
Theoremisxmetd 12530* Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝜑𝑋 ∈ V)    &   (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))       (𝜑𝐷 ∈ (∞Met‘𝑋))
 
Theoremisxmet2d 12531* It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝜑𝑋 ∈ V)    &   (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐷𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))       (𝜑𝐷 ∈ (∞Met‘𝑋))
 
Theoremmetflem 12532* Lemma for metf 12534 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
 
Theoremxmetf 12533 Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theoremmetf 12534 Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
(𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
 
Theoremxmetcl 12535 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theoremmetcl 12536 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremismet2 12537 An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
 
Theoremmetxmet 12538 A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
 
Theoremxmetdmdm 12539 Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theoremmetdmdm 12540 Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theoremxmetunirn 12541 Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
(𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
 
Theoremxmeteq0 12542 The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremmeteq0 12543 The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremxmettri2 12544 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmettri2 12545 Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
 
Theoremxmet0 12546 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theoremmet0 12547 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theoremxmetge0 12548 The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremmetge0 12549 The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremxmetlecl 12550 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremxmetsym 12551 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmetpsmet 12552 An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
 
Theoremxmettpos 12553 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)
 
Theoremmetsym 12554 The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmettri 12555 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmettri 12556 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
 
Theoremxmettri3 12557 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
 
Theoremmettri3 12558 Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶)))
 
Theoremxmetrtri 12559 One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
 
Theoremmetrtri 12560 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
 
Theoremmetn0 12561 A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))
 
Theoremxmetres2 12562 Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
 
Theoremmetreslem 12563 Lemma for metres 12566. (Contributed by Mario Carneiro, 24-Aug-2015.)
(dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
 
Theoremmetres2 12564 Lemma for metres 12566. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))
 
Theoremxmetres 12565 A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))
 
Theoremmetres 12566 A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))
 
Theorem0met 12567 The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
∅ ∈ (Met‘∅)
 
7.2.3  Metric space balls
 
Theoremblfvalps 12568* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
 
Theoremblfval 12569* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
 
Theoremblex 12570 A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
 
Theoremblvalps 12571* The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 
Theoremblval 12572* The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 
Theoremelblps 12573 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
 
Theoremelbl 12574 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
 
Theoremelbl2ps 12575 Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
 
Theoremelbl2 12576 Membership in a ball. (Contributed by NM, 9-Mar-2007.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
 
Theoremelbl3ps 12577 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
 
Theoremelbl3 12578 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
 
Theoremblcomps 12579 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅)))
 
Theoremblcom 12580 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅)))
 
Theoremxblpnfps 12581 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremxblpnf 12582 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremblpnf 12583 The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑃(ball‘𝐷)+∞) = 𝑋)
 
Theorembldisj 12584 Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
 
Theoremblgt0 12585 A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
 
Theorembl2in 12586 Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
 
Theoremxblss2ps 12587 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 12590 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝜑𝐷 ∈ (PsMet‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑄𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝑆 ∈ ℝ*)    &   (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)    &   (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremxblss2 12588 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 12590 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐷 ∈ (∞Met‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑄𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝑆 ∈ ℝ*)    &   (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)    &   (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblss2ps 12589 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblss2 12590 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblhalf 12591 A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
(((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
 
Theoremblfps 12592 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
 
Theoremblf 12593 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
 
Theoremblrnps 12594* Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
 
Theoremblrn 12595* Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
 
Theoremxblcntrps 12596 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremxblcntr 12597 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremblcntrps 12598 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremblcntr 12599 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremxblm 12600* A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13316
  Copyright terms: Public domain < Previous  Next >