HomeHome Intuitionistic Logic Explorer
Theorem List (p. 126 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12501-12600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembasendxnplusgndx 12501 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
(Base‘ndx) ≠ (+g‘ndx)
 
Theoremgrpstrg 12502 A constructed group is a structure on 1...2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 2⟩)
 
Theoremgrpbaseg 12503 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theoremgrpplusgg 12504 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → + = (+g𝐺))
 
Theoremmulrndx 12505 Index value of the df-mulr 12471 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(.r‘ndx) = 3
 
Theoremmulrid 12506 Utility theorem: index-independent form of df-mulr 12471. (Contributed by Mario Carneiro, 8-Jun-2013.)
.r = Slot (.r‘ndx)
 
Theoremmulrslid 12507 Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
(.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
 
Theoremplusgndxnmulrndx 12508 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(+g‘ndx) ≠ (.r‘ndx)
 
Theorembasendxnmulrndx 12509 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(Base‘ndx) ≠ (.r‘ndx)
 
Theoremrngstrg 12510 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
 
Theoremrngbaseg 12511 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝐵 = (Base‘𝑅))
 
Theoremrngplusgg 12512 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → + = (+g𝑅))
 
Theoremrngmulrg 12513 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))
 
Theoremstarvndx 12514 Index value of the df-starv 12472 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(*𝑟‘ndx) = 4
 
Theoremstarvid 12515 Utility theorem: index-independent form of df-starv 12472. (Contributed by Mario Carneiro, 6-Oct-2013.)
*𝑟 = Slot (*𝑟‘ndx)
 
Theoremstarvslid 12516 Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.)
(*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ)
 
Theoremsrngstrd 12517 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝑅 Struct ⟨1, 4⟩)
 
Theoremsrngbased 12518 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝐵 = (Base‘𝑅))
 
Theoremsrngplusgd 12519 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑+ = (+g𝑅))
 
Theoremsrngmulrd 12520 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑· = (.r𝑅))
 
Theoremsrnginvld 12521 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑 = (*𝑟𝑅))
 
Theoremscandx 12522 Index value of the df-sca 12473 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(Scalar‘ndx) = 5
 
Theoremscaid 12523 Utility theorem: index-independent form of scalar df-sca 12473. (Contributed by Mario Carneiro, 19-Jun-2014.)
Scalar = Slot (Scalar‘ndx)
 
Theoremscaslid 12524 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
(Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
 
Theoremvscandx 12525 Index value of the df-vsca 12474 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
( ·𝑠 ‘ndx) = 6
 
Theoremvscaid 12526 Utility theorem: index-independent form of scalar product df-vsca 12474. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
·𝑠 = Slot ( ·𝑠 ‘ndx)
 
Theoremvscaslid 12527 Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
 
Theoremlmodstrd 12528 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝑊 Struct ⟨1, 6⟩)
 
Theoremlmodbased 12529 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremlmodplusgd 12530 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑+ = (+g𝑊))
 
Theoremlmodscad 12531 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐹 = (Scalar‘𝑊))
 
Theoremlmodvscad 12532 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑· = ( ·𝑠𝑊))
 
Theoremipndx 12533 Index value of the df-ip 12475 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(·𝑖‘ndx) = 8
 
Theoremipid 12534 Utility theorem: index-independent form of df-ip 12475. (Contributed by Mario Carneiro, 6-Oct-2013.)
·𝑖 = Slot (·𝑖‘ndx)
 
Theoremipslid 12535 Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
(·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
 
Theoremipsstrd 12536 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐴 Struct ⟨1, 8⟩)
 
Theoremipsbased 12537 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐵 = (Base‘𝐴))
 
Theoremipsaddgd 12538 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑+ = (+g𝐴))
 
Theoremipsmulrd 12539 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑× = (.r𝐴))
 
Theoremipsscad 12540 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝑆 = (Scalar‘𝐴))
 
Theoremipsvscad 12541 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑· = ( ·𝑠𝐴))
 
Theoremipsipd 12542 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐼 = (·𝑖𝐴))
 
Theoremtsetndx 12543 Index value of the df-tset 12476 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(TopSet‘ndx) = 9
 
Theoremtsetid 12544 Utility theorem: index-independent form of df-tset 12476. (Contributed by NM, 20-Oct-2012.)
TopSet = Slot (TopSet‘ndx)
 
Theoremtsetslid 12545 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
(TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
 
Theoremtopgrpstrd 12546 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝑊 Struct ⟨1, 9⟩)
 
Theoremtopgrpbasd 12547 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremtopgrpplusgd 12548 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑+ = (+g𝑊))
 
Theoremtopgrptsetd 12549 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐽 = (TopSet‘𝑊))
 
Theoremplendx 12550 Index value of the df-ple 12477 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
(le‘ndx) = 10
 
Theorempleid 12551 Utility theorem: self-referencing, index-independent form of df-ple 12477. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
le = Slot (le‘ndx)
 
Theorempleslid 12552 Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.)
(le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
 
Theoremdsndx 12553 Index value of the df-ds 12479 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(dist‘ndx) = 12
 
Theoremdsid 12554 Utility theorem: index-independent form of df-ds 12479. (Contributed by Mario Carneiro, 23-Dec-2013.)
dist = Slot (dist‘ndx)
 
Theoremdsslid 12555 Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.)
(dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
 
6.1.3  Definition of the structure product
 
Syntaxcrest 12556 Extend class notation with the function returning a subspace topology.
class t
 
Syntaxctopn 12557 Extend class notation with the topology extractor function.
class TopOpen
 
Definitiondf-rest 12558* Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
 
Definitiondf-topn 12559 Define the topology extractor function. This differs from df-tset 12476 when a structure has been restricted using df-ress 12402; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
 
Theoremrestfn 12560 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
t Fn (V × V)
 
Theoremtopnfn 12561 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
TopOpen Fn V
 
Theoremrestval 12562* The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
 
Theoremelrest 12563* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
 
Theoremelrestr 12564 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
 
Theoremrestid2 12565 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
 
Theoremrestsspw 12566 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽t 𝐴) ⊆ 𝒫 𝐴
 
Theoremrestid 12567 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
 
Theoremtopnvalg 12568 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
 
Theoremtopnidg 12569 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊))
 
Theoremtopnpropgd 12570 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
 
Syntaxctg 12571 Extend class notation with a function that converts a basis to its corresponding topology.
class topGen
 
Syntaxcpt 12572 Extend class notation with a function whose value is a product topology.
class t
 
Syntaxc0g 12573 Extend class notation with group identity element.
class 0g
 
Syntaxcgsu 12574 Extend class notation to include finitely supported group sums.
class Σg
 
Definitiondf-0g 12575* Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum 12576. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
 
Definitiondf-gsum 12576* Define the group sum for the structure 𝐺 of a finite sequence of elements whose values are defined by the expression 𝐵 and whose set of indices is 𝐴. It may be viewed as a product (if 𝐺 is a multiplication), a sum (if 𝐺 is an addition) or any other operation. The variable 𝑘 is normally a free variable in 𝐵 (i.e., 𝐵 can be thought of as 𝐵(𝑘)). The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺.

1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity.

2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., (𝐵(1) + 𝐵(2)) + 𝐵(3), etc.

3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined.

4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.)

Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
 
Definitiondf-topgen 12577* Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.)
topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
 
Definitiondf-pt 12578* Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.)
t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
 
Syntaxcprds 12579 The function constructing structure products.
class Xs
 
Syntaxcpws 12580 The function constructing structure powers.
class s
 
Definitiondf-prds 12581* Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
 
Theoremreldmprds 12582 The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Rel dom Xs
 
Definitiondf-pws 12583* Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.)
s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
 
PART 7  BASIC ALGEBRAIC STRUCTURES
 
7.1  Monoids
 
7.1.1  Magmas

According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.".

Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following:

With df-mpo 5847, binary operations are defined by a rule, and with df-ov 5845, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation 5845 (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 are more precisely called internal binary operations. If, in addition, the result is also contained in the set 𝑆, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set 𝑆" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 5845).

The definition of magmas (Mgm, see df-mgm 12587) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible.

 
Syntaxcplusf 12584 Extend class notation with group addition as a function.
class +𝑓
 
Syntaxcmgm 12585 Extend class notation with class of all magmas.
class Mgm
 
Definitiondf-plusf 12586* Define group addition function. Usually we will use +g directly instead of +𝑓, and they have the same behavior in most cases. The main advantage of +𝑓 for any magma is that it is a guaranteed function (mgmplusf 12597), while +g only has closure (mgmcl 12590). (Contributed by Mario Carneiro, 14-Aug-2015.)
+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
 
Definitiondf-mgm 12587* A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Mgm = {𝑔[(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
 
Theoremismgm 12588* The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremismgmn0 12589* The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremmgmcl 12590 Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremisnmgm 12591 A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
 
Theoremmgmsscl 12592 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)       (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
 
Theoremplusffvalg 12593* The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
 
Theoremplusfvalg 12594 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝐺𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))
 
Theoremplusfeqg 12595 If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )
 
Theoremplusffng 12596 The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺𝑉 Fn (𝐵 × 𝐵))
 
Theoremmgmplusf 12597 The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+𝑓𝑀)       (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremintopsn 12598 The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
(( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgmb1mgm1 12599 The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgm0 12600 Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >