Theorem List for Intuitionistic Logic Explorer - 12501-12600 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | baseslid 12501 |
The base set extractor is a slot. (Contributed by Jim Kingdon,
31-Jan-2023.)
|
⊢ (Base = Slot (Base‘ndx) ∧
(Base‘ndx) ∈ ℕ) |
|
Theorem | basfn 12502 |
The base set extractor is a function on V.
(Contributed by Stefan
O'Rear, 8-Jul-2015.)
|
⊢ Base Fn V |
|
Theorem | basmex 12503 |
A structure whose base is inhabited is a set. (Contributed by Jim
Kingdon, 18-Nov-2024.)
|
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) |
|
Theorem | basmexd 12504 |
A structure whose base is inhabited is a set. (Contributed by Jim
Kingdon, 28-Nov-2024.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ V) |
|
Theorem | reldmress 12505 |
The structure restriction is a proper operator, so it can be used with
ovprc1 5905. (Contributed by Stefan O'Rear,
29-Nov-2014.)
|
⊢ Rel dom ↾s |
|
Theorem | ressvalsets 12506 |
Value of structure restriction. (Contributed by Jim Kingdon,
16-Jan-2025.)
|
⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
|
Theorem | ressex 12507 |
Existence of structure restriction. (Contributed by Jim Kingdon,
16-Jan-2025.)
|
⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) ∈ V) |
|
Theorem | ressval2 12508 |
Value of nontrivial structure restriction. (Contributed by Stefan
O'Rear, 29-Nov-2014.)
|
⊢ 𝑅 = (𝑊 ↾s 𝐴)
& ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
|
Theorem | ressbasd 12509 |
Base set of a structure restriction. (Contributed by Stefan O'Rear,
26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
|
⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
|
Theorem | ressbas2d 12510 |
Base set of a structure restriction. (Contributed by Mario Carneiro,
2-Dec-2014.)
|
⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) |
|
Theorem | ressbasssd 12511 |
The base set of a restriction is a subset of the base set of the
original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) |
|
Theorem | strressid 12512 |
Behavior of trivial restriction. (Contributed by Stefan O'Rear,
29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑊)
& ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊)
⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) |
|
Theorem | ressval3d 12513 |
Value of structure restriction, deduction version. (Contributed by AV,
14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.)
|
⊢ 𝑅 = (𝑆 ↾s 𝐴)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉)
& ⊢ (𝜑 → Fun 𝑆)
& ⊢ (𝜑 → 𝐸 ∈ dom 𝑆)
& ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) |
|
Theorem | resseqnbasd 12514 |
The components of an extensible structure except the base set remain
unchanged on a structure restriction. (Contributed by Mario Carneiro,
26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV,
19-Oct-2024.)
|
⊢ 𝑅 = (𝑊 ↾s 𝐴)
& ⊢ 𝐶 = (𝐸‘𝑊)
& ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠
(Base‘ndx)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) |
|
Theorem | ressinbasd 12515 |
Restriction only cares about the part of the second set which intersects
the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋)
& ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
|
Theorem | ressressg 12516 |
Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.)
(Proof shortened by Mario Carneiro, 2-Dec-2014.)
|
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
|
Theorem | ressabsg 12517 |
Restriction absorption law. (Contributed by Mario Carneiro,
12-Jun-2015.)
|
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
|
6.1.2 Slot definitions
|
|
Syntax | cplusg 12518 |
Extend class notation with group (addition) operation.
|
class +g |
|
Syntax | cmulr 12519 |
Extend class notation with ring multiplication.
|
class .r |
|
Syntax | cstv 12520 |
Extend class notation with involution.
|
class *𝑟 |
|
Syntax | csca 12521 |
Extend class notation with scalar field.
|
class Scalar |
|
Syntax | cvsca 12522 |
Extend class notation with scalar product.
|
class
·𝑠 |
|
Syntax | cip 12523 |
Extend class notation with Hermitian form (inner product).
|
class
·𝑖 |
|
Syntax | cts 12524 |
Extend class notation with the topology component of a topological
space.
|
class TopSet |
|
Syntax | cple 12525 |
Extend class notation with "less than or equal to" for posets.
|
class le |
|
Syntax | coc 12526 |
Extend class notation with the class of orthocomplementation
extractors.
|
class oc |
|
Syntax | cds 12527 |
Extend class notation with the metric space distance function.
|
class dist |
|
Syntax | cunif 12528 |
Extend class notation with the uniform structure.
|
class UnifSet |
|
Syntax | chom 12529 |
Extend class notation with the hom-set structure.
|
class Hom |
|
Syntax | cco 12530 |
Extend class notation with the composition operation.
|
class comp |
|
Definition | df-plusg 12531 |
Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
⊢ +g = Slot 2 |
|
Definition | df-mulr 12532 |
Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
⊢ .r = Slot 3 |
|
Definition | df-starv 12533 |
Define the involution function of a *-ring. (Contributed by NM,
4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ *𝑟 = Slot
4 |
|
Definition | df-sca 12534 |
Define scalar field component of a vector space 𝑣. (Contributed by
NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ Scalar = Slot 5 |
|
Definition | df-vsca 12535 |
Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
⊢ ·𝑠 = Slot
6 |
|
Definition | df-ip 12536 |
Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ ·𝑖 = Slot
8 |
|
Definition | df-tset 12537 |
Define the topology component of a topological space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
⊢ TopSet = Slot 9 |
|
Definition | df-ple 12538 |
Define "less than or equal to" ordering extractor for posets and
related
structures. We use ;10 for the index to avoid conflict with 1
through 9 used for other purposes. (Contributed
by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
⊢ le = Slot ;10 |
|
Definition | df-ocomp 12539 |
Define the orthocomplementation extractor for posets and related
structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
⊢ oc = Slot ;11 |
|
Definition | df-ds 12540 |
Define the distance function component of a metric space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
⊢ dist = Slot ;12 |
|
Definition | df-unif 12541 |
Define the uniform structure component of a uniform space. (Contributed
by Mario Carneiro, 14-Aug-2015.)
|
⊢ UnifSet = Slot ;13 |
|
Definition | df-hom 12542 |
Define the hom-set component of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
⊢ Hom = Slot ;14 |
|
Definition | df-cco 12543 |
Define the composition operation of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
⊢ comp = Slot ;15 |
|
Theorem | strleund 12544 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
|
Theorem | strleun 12545 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 |
|
Theorem | strle1g 12546 |
Make a structure from a singleton. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
|
Theorem | strle2g 12547 |
Make a structure from a pair. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
|
Theorem | strle3g 12548 |
Make a structure from a triple. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽
& ⊢ 𝐽 < 𝐾
& ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉) |
|
Theorem | plusgndx 12549 |
Index value of the df-plusg 12531 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (+g‘ndx) =
2 |
|
Theorem | plusgid 12550 |
Utility theorem: index-independent form of df-plusg 12531. (Contributed by
NM, 20-Oct-2012.)
|
⊢ +g = Slot
(+g‘ndx) |
|
Theorem | plusgslid 12551 |
Slot property of +g. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
⊢ (+g = Slot
(+g‘ndx) ∧ (+g‘ndx) ∈
ℕ) |
|
Theorem | opelstrsl 12552 |
The slot of a structure which contains an ordered pair for that slot.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
|
Theorem | opelstrbas 12553 |
The base set of a structure with a base set. (Contributed by AV,
10-Nov-2021.)
|
⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
|
Theorem | 1strstrg 12554 |
A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
(Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) |
|
Theorem | 1strbas 12555 |
The base set of a constructed one-slot structure. (Contributed by AV,
27-Mar-2020.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
|
Theorem | 2strstrg 12556 |
A constructed two-slot structure. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
|
Theorem | 2strbasg 12557 |
The base set of a constructed two-slot structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
Theorem | 2stropg 12558 |
The other slot of a constructed two-slot structure. (Contributed by
Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
|
Theorem | 2strstr1g 12559 |
A constructed two-slot structure. Version of 2strstrg 12556 not depending
on the hard-coded index value of the base set. (Contributed by AV,
22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
|
Theorem | 2strbas1g 12560 |
The base set of a constructed two-slot structure. Version of 2strbasg 12557
not depending on the hard-coded index value of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
Theorem | 2strop1g 12561 |
The other slot of a constructed two-slot structure. Version of
2stropg 12558 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
|
Theorem | basendxnplusgndx 12562 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
⊢ (Base‘ndx) ≠
(+g‘ndx) |
|
Theorem | grpstrg 12563 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
|
Theorem | grpbaseg 12564 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
Theorem | grpplusgg 12565 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
|
Theorem | ressplusgd 12566 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
|
Theorem | mulrndx 12567 |
Index value of the df-mulr 12532 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (.r‘ndx) =
3 |
|
Theorem | mulrid 12568 |
Utility theorem: index-independent form of df-mulr 12532. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
⊢ .r = Slot
(.r‘ndx) |
|
Theorem | mulrslid 12569 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
|
Theorem | plusgndxnmulrndx 12570 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
⊢ (+g‘ndx) ≠
(.r‘ndx) |
|
Theorem | basendxnmulrndx 12571 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
⊢ (Base‘ndx) ≠
(.r‘ndx) |
|
Theorem | rngstrg 12572 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
|
Theorem | rngbaseg 12573 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
|
Theorem | rngplusgg 12574 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
|
Theorem | rngmulrg 12575 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
|
Theorem | starvndx 12576 |
Index value of the df-starv 12533 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (*𝑟‘ndx) =
4 |
|
Theorem | starvid 12577 |
Utility theorem: index-independent form of df-starv 12533. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
⊢ *𝑟 = Slot
(*𝑟‘ndx) |
|
Theorem | starvslid 12578 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
|
Theorem | srngstrd 12579 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
|
Theorem | srngbased 12580 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
|
Theorem | srngplusgd 12581 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
|
Theorem | srngmulrd 12582 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
|
Theorem | srnginvld 12583 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
|
Theorem | scandx 12584 |
Index value of the df-sca 12534 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (Scalar‘ndx) = 5 |
|
Theorem | scaid 12585 |
Utility theorem: index-independent form of scalar df-sca 12534. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
⊢ Scalar = Slot
(Scalar‘ndx) |
|
Theorem | scaslid 12586 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
|
Theorem | scandxnbasendx 12587 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
|
Theorem | scandxnplusgndx 12588 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
|
Theorem | scandxnmulrndx 12589 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
|
Theorem | vscandx 12590 |
Index value of the df-vsca 12535 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ ( ·𝑠
‘ndx) = 6 |
|
Theorem | vscaid 12591 |
Utility theorem: index-independent form of scalar product df-vsca 12535.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
|
Theorem | vscaslid 12592 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
|
Theorem | lmodstrd 12593 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
|
Theorem | lmodbased 12594 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
|
Theorem | lmodplusgd 12595 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
|
Theorem | lmodscad 12596 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
|
Theorem | lmodvscad 12597 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
|
Theorem | ipndx 12598 |
Index value of the df-ip 12536 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢
(·𝑖‘ndx) = 8 |
|
Theorem | ipid 12599 |
Utility theorem: index-independent form of df-ip 12536. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
⊢ ·𝑖 = Slot
(·𝑖‘ndx) |
|
Theorem | ipslid 12600 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |