![]() |
Intuitionistic Logic Explorer Theorem List (p. 126 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | infpnlem2 12501* | Lemma for infpn 12502. For any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (Contributed by NM, 5-May-2005.) |
⊢ 𝐾 = ((!‘𝑁) + 1) ⇒ ⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) | ||
Theorem | infpn 12502* | There exist infinitely many prime numbers: for any positive integer 𝑁, there exists a prime number 𝑗 greater than 𝑁. (See infpn2 12616 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006.) |
⊢ (𝑁 ∈ ℕ → ∃𝑗 ∈ ℕ (𝑁 < 𝑗 ∧ ∀𝑘 ∈ ℕ ((𝑗 / 𝑘) ∈ ℕ → (𝑘 = 1 ∨ 𝑘 = 𝑗)))) | ||
Theorem | prmunb 12503* | The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.) |
⊢ (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝) | ||
Theorem | 1arithlem1 12504* | Lemma for 1arith 12508. (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑀‘𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))) | ||
Theorem | 1arithlem2 12505* | Lemma for 1arith 12508. (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀‘𝑁)‘𝑃) = (𝑃 pCnt 𝑁)) | ||
Theorem | 1arithlem3 12506* | Lemma for 1arith 12508. (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑀‘𝑁):ℙ⟶ℕ0) | ||
Theorem | 1arithlem4 12507* | Lemma for 1arith 12508. (Contributed by Mario Carneiro, 30-May-2014.) |
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) & ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) & ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) | ||
Theorem | 1arith 12508* | Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.) |
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) & ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑𝑚 ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} ⇒ ⊢ 𝑀:ℕ–1-1-onto→𝑅 | ||
Theorem | 1arith2 12509* | Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.) |
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) & ⊢ 𝑅 = {𝑒 ∈ (ℕ0 ↑𝑚 ℙ) ∣ (◡𝑒 “ ℕ) ∈ Fin} ⇒ ⊢ ∀𝑧 ∈ ℕ ∃!𝑔 ∈ 𝑅 (𝑀‘𝑧) = 𝑔 | ||
Syntax | cgz 12510 | Extend class notation with the set of gaussian integers. |
class ℤ[i] | ||
Definition | df-gz 12511 | Define the set of gaussian integers, which are complex numbers whose real and imaginary parts are integers. (Note that the [i] is actually part of the symbol token and has no independent meaning.) (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)} | ||
Theorem | elgz 12512 | Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | ||
Theorem | gzcn 12513 | A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | ||
Theorem | zgz 12514 | An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i]) | ||
Theorem | igz 12515 | i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ i ∈ ℤ[i] | ||
Theorem | gznegcl 12516 | The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i]) | ||
Theorem | gzcjcl 12517 | The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i]) | ||
Theorem | gzaddcl 12518 | The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i]) | ||
Theorem | gzmulcl 12519 | The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i]) | ||
Theorem | gzreim 12520 | Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + (i · 𝐵)) ∈ ℤ[i]) | ||
Theorem | gzsubcl 12521 | The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 − 𝐵) ∈ ℤ[i]) | ||
Theorem | gzabssqcl 12522 | The squared norm of a gaussian integer is an integer. (Contributed by Mario Carneiro, 16-Jul-2014.) |
⊢ (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0) | ||
Theorem | 4sqlem5 12523 | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) | ||
Theorem | 4sqlem6 12524 | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) | ||
Theorem | 4sqlem7 12525 | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) | ||
Theorem | 4sqlem8 12526 | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) | ||
Theorem | 4sqlem9 12527 | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) | ||
Theorem | 4sqlem10 12528 | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 16-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2))) | ||
Theorem | 4sqlem1 12529* | Lemma for 4sq 12551. The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ 𝑆 ⊆ ℕ0 | ||
Theorem | 4sqlem2 12530* | Lemma for 4sq 12551. Change bound variables in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) | ||
Theorem | 4sqlem3 12531* | Lemma for 4sq 12551. Sufficient condition to be in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆) | ||
Theorem | 4sqlem4a 12532* | Lemma for 4sqlem4 12533. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆) | ||
Theorem | 4sqlem4 12533* | Lemma for 4sq 12551. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))) | ||
Theorem | mul4sqlem 12534* | Lemma for mul4sq 12535: algebraic manipulations. The extra assumptions involving 𝑀 would let us know not just that the product is a sum of squares, but also that it preserves divisibility by 𝑀. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝐴 ∈ ℤ[i]) & ⊢ (𝜑 → 𝐵 ∈ ℤ[i]) & ⊢ (𝜑 → 𝐶 ∈ ℤ[i]) & ⊢ (𝜑 → 𝐷 ∈ ℤ[i]) & ⊢ 𝑋 = (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) & ⊢ 𝑌 = (((abs‘𝐶)↑2) + ((abs‘𝐷)↑2)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ((𝐴 − 𝐶) / 𝑀) ∈ ℤ[i]) & ⊢ (𝜑 → ((𝐵 − 𝐷) / 𝑀) ∈ ℤ[i]) & ⊢ (𝜑 → (𝑋 / 𝑀) ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑀) · (𝑌 / 𝑀)) ∈ 𝑆) | ||
Theorem | mul4sq 12535* | Euler's four-square identity: The product of two sums of four squares is also a sum of four squares. This is usually quoted as an explicit formula involving eight real variables; we save some time by working with complex numbers (gaussian integers) instead, so that we only have to work with four variables, and also hiding the actual formula for the product in the proof of mul4sqlem 12534. (For the curious, the explicit formula that is used is ( ∣ 𝑎 ∣ ↑2 + ∣ 𝑏 ∣ ↑2)( ∣ 𝑐 ∣ ↑2 + ∣ 𝑑 ∣ ↑2) = ∣ 𝑎∗ · 𝑐 + 𝑏 · 𝑑∗ ∣ ↑2 + ∣ 𝑎∗ · 𝑑 − 𝑏 · 𝑐∗ ∣ ↑2.) (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||
Theorem | 4sqlemafi 12536* | Lemma for 4sq 12551. 𝐴 is finite. (Contributed by Jim Kingdon, 24-May-2025.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⇒ ⊢ (𝜑 → 𝐴 ∈ Fin) | ||
Theorem | 4sqlemffi 12537* | Lemma for 4sq 12551. ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
Theorem | 4sqleminfi 12538* | Lemma for 4sq 12551. 𝐴 ∩ ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) | ||
Theorem | 4sqexercise1 12539* | Exercise which may help in understanding the proof of 4sqlemsdc 12541. (Contributed by Jim Kingdon, 25-May-2025.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)} ⇒ ⊢ (𝐴 ∈ ℕ0 → DECID 𝐴 ∈ 𝑆) | ||
Theorem | 4sqexercise2 12540* | Exercise which may help in understanding the proof of 4sqlemsdc 12541. (Contributed by Jim Kingdon, 30-May-2025.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))} ⇒ ⊢ (𝐴 ∈ ℕ0 → DECID 𝐴 ∈ 𝑆) | ||
Theorem | 4sqlemsdc 12541* |
Lemma for 4sq 12551. The property of being the sum of four
squares is
decidable.
The proof involves showing that (for a particular 𝐴) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12539 and 4sqexercise2 12540 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ (𝐴 ∈ ℕ0 → DECID 𝐴 ∈ 𝑆) | ||
Theorem | 4sqlem11 12542* | Lemma for 4sq 12551. Use the pigeonhole principle to show that the sets {𝑚↑2 ∣ 𝑚 ∈ (0...𝑁)} and {-1 − 𝑛↑2 ∣ 𝑛 ∈ (0...𝑁)} have a common element, mod 𝑃. Note that although the conclusion is stated in terms of 𝐴 ∩ ran 𝐹 being nonempty, it is also inhabited by 4sqleminfi 12538 and fin0 6943. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) | ||
Theorem | 4sqlem12 12543* | Lemma for 4sq 12551. For any odd prime 𝑃, there is a 𝑘 < 𝑃 such that 𝑘𝑃 − 1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} & ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) | ||
Theorem | 4sqlem13m 12544* | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) ⇒ ⊢ (𝜑 → (∃𝑗 𝑗 ∈ 𝑇 ∧ 𝑀 < 𝑃)) | ||
Theorem | 4sqlem14 12545* | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ (𝜑 → 𝑅 ∈ ℕ0) | ||
Theorem | 4sqlem15 12546* | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ ((𝜑 ∧ 𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))) | ||
Theorem | 4sqlem16 12547* | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ (𝜑 → (𝑅 ≤ 𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃)))) | ||
Theorem | 4sqlem17 12548* | Lemma for 4sq 12551. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | 4sqlem18 12549* | Lemma for 4sq 12551. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑆) | ||
Theorem | 4sqlem19 12550* | Lemma for 4sq 12551. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12549. If 𝑘 is 0, 1, 2, we show 𝑘 ∈ 𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 12535 𝑘 ∈ 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ℕ0 = 𝑆 | ||
Theorem | 4sq 12551* | Lagrange's four-square theorem, or Bachet's conjecture: every nonnegative integer is expressible as a sum of four squares. This is Metamath 100 proof #19. (Contributed by Mario Carneiro, 16-Jul-2014.) |
⊢ (𝐴 ∈ ℕ0 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) | ||
Theorem | oddennn 12552 | There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.) |
⊢ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ | ||
Theorem | evenennn 12553 | There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ | ||
Theorem | xpnnen 12554 | The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.) |
⊢ (ℕ × ℕ) ≈ ℕ | ||
Theorem | xpomen 12555 | The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) |
⊢ (ω × ω) ≈ ω | ||
Theorem | xpct 12556 | The cartesian product of two sets dominated by ω is dominated by ω. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) | ||
Theorem | unennn 12557 | The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.) |
⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) | ||
Theorem | znnen 12558 | The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.) |
⊢ ℤ ≈ ℕ | ||
Theorem | ennnfonelemdc 12559* | Lemma for ennnfone 12585. A direct consequence of fidcenumlemrk 7015. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → 𝑃 ∈ ω) ⇒ ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) | ||
Theorem | ennnfonelemk 12560* | Lemma for ennnfone 12585. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝐾) | ||
Theorem | ennnfonelemj0 12561* | Lemma for ennnfone 12585. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | ||
Theorem | ennnfonelemjn 12562* | Lemma for ennnfone 12585. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) | ||
Theorem | ennnfonelemg 12563* | Lemma for ennnfone 12585. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | ||
Theorem | ennnfonelemh 12564* | Lemma for ennnfone 12585. (Contributed by Jim Kingdon, 8-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) | ||
Theorem | ennnfonelem0 12565* | Lemma for ennnfone 12585. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐻‘0) = ∅) | ||
Theorem | ennnfonelemp1 12566* | Lemma for ennnfone 12585. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) | ||
Theorem | ennnfonelem1 12567* | Lemma for ennnfone 12585. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐻‘1) = {〈∅, (𝐹‘∅)〉}) | ||
Theorem | ennnfonelemom 12568* | Lemma for ennnfone 12585. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝐻‘𝑃) ∈ ω) | ||
Theorem | ennnfonelemhdmp1 12569* | Lemma for ennnfone 12585. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) ⇒ ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) | ||
Theorem | ennnfonelemss 12570* | Lemma for ennnfone 12585. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | ||
Theorem | ennnfoneleminc 12571* | Lemma for ennnfone 12585. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → 𝑄 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ≤ 𝑄) ⇒ ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑄)) | ||
Theorem | ennnfonelemkh 12572* | Lemma for ennnfone 12585. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝐻‘𝑃) ⊆ (◡𝑁‘𝑃)) | ||
Theorem | ennnfonelemhf1o 12573* | Lemma for ennnfone 12585. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃))) | ||
Theorem | ennnfonelemex 12574* | Lemma for ennnfone 12585. Extending the sequence (𝐻‘𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖)) | ||
Theorem | ennnfonelemhom 12575* | Lemma for ennnfone 12585. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑀 ∈ ω) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖)) | ||
Theorem | ennnfonelemrnh 12576* | Lemma for ennnfone 12585. A consequence of ennnfonelemss 12570. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐻) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐻) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋)) | ||
Theorem | ennnfonelemfun 12577* | Lemma for ennnfone 12585. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → Fun 𝐿) | ||
Theorem | ennnfonelemf1 12578* | Lemma for ennnfone 12585. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) | ||
Theorem | ennnfonelemrn 12579* | Lemma for ennnfone 12585. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → ran 𝐿 = 𝐴) | ||
Theorem | ennnfonelemdm 12580* | Lemma for ennnfone 12585. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → dom 𝐿 = ω) | ||
Theorem | ennnfonelemen 12581* | Lemma for ennnfone 12585. The result. (Contributed by Jim Kingdon, 16-Jul-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
Theorem | ennnfonelemnn0 12582* | Lemma for ennnfone 12585. A version of ennnfonelemen 12581 expressed in terms of ℕ0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
Theorem | ennnfonelemr 12583* | Lemma for ennnfone 12585. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
Theorem | ennnfonelemim 12584* | Lemma for ennnfone 12585. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝐴 ≈ ℕ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0–onto→𝐴 ∧ ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝑓‘𝑘) ≠ (𝑓‘𝑗)))) | ||
Theorem | ennnfone 12585* | A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 𝐴 is countable (that's the 𝑓:ℕ0–onto→𝐴 part, as seen in theorems like ctm 7170), infinite (that's the part about being able to find an element of 𝐴 distinct from any mapping of a natural number via 𝑓), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.) |
⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0–onto→𝐴 ∧ ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝑓‘𝑘) ≠ (𝑓‘𝑗)))) | ||
Theorem | exmidunben 12586* | If any unbounded set of positive integers is equinumerous to ℕ, then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.) |
⊢ ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID) | ||
Theorem | ctinfomlemom 12587* | Lemma for ctinfom 12588. Converting between ω and ℕ0. (Contributed by Jim Kingdon, 10-Aug-2023.) |
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐺 = (𝐹 ∘ ◡𝑁) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛)) ⇒ ⊢ (𝜑 → (𝐺:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖))) | ||
Theorem | ctinfom 12588* | A condition for a set being countably infinite. Restates ennnfone 12585 in terms of ω and function image. Like ennnfone 12585 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.) |
⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) | ||
Theorem | inffinp1 12589* | An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → ω ≼ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
Theorem | ctinf 12590* | A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.) |
⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) | ||
Theorem | qnnen 12591 | The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.) |
⊢ ℚ ≈ ℕ | ||
Theorem | enctlem 12592* | Lemma for enct 12593. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) | ||
Theorem | enct 12593* | Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.) |
⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) | ||
Theorem | ctiunctlemu1st 12594* | Lemma for ctiunct 12600. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ (𝜑 → 𝑁 ∈ 𝑈) ⇒ ⊢ (𝜑 → (1st ‘(𝐽‘𝑁)) ∈ 𝑆) | ||
Theorem | ctiunctlemu2nd 12595* | Lemma for ctiunct 12600. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ (𝜑 → 𝑁 ∈ 𝑈) ⇒ ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) | ||
Theorem | ctiunctlemuom 12596 | Lemma for ctiunct 12600. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⇒ ⊢ (𝜑 → 𝑈 ⊆ ω) | ||
Theorem | ctiunctlemudc 12597* | Lemma for ctiunct 12600. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑈) | ||
Theorem | ctiunctlemf 12598* | Lemma for ctiunct 12600. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) ⇒ ⊢ (𝜑 → 𝐻:𝑈⟶∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ctiunctlemfo 12599* | Lemma for ctiunct 12600. (Contributed by Jim Kingdon, 28-Oct-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) & ⊢ Ⅎ𝑥𝐻 & ⊢ Ⅎ𝑥𝑈 ⇒ ⊢ (𝜑 → 𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ctiunct 12600* |
A sequence of enumerations gives an enumeration of the union. We refer
to "sequence of enumerations" rather than "countably many
countable
sets" because the hypothesis provides more than countability for
each
𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥)
which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.
For "countably many countable sets" the key hypothesis would be (𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12604 (which uses countable choice) although that is for a countably infinite collection not any countable collection. Compare with the case of two sets instead of countably many, as seen at unct 12602, which says that the union of two countable sets is countable . The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12555) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of ∪ 𝑥 ∈ 𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7172 and ctssdc 7174. (Contributed by Jim Kingdon, 31-Oct-2023.) |
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |