Home | Intuitionistic Logic Explorer Theorem List (p. 126 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-ocomp 12501 | Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ oc = Slot ;11 | ||
Definition | df-ds 12502 | Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ dist = Slot ;12 | ||
Definition | df-unif 12503 | Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ UnifSet = Slot ;13 | ||
Definition | df-hom 12504 | Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ Hom = Slot ;14 | ||
Definition | df-cco 12505 | Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ comp = Slot ;15 | ||
Theorem | strleund 12506 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) | ||
Theorem | strleun 12507 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 | ||
Theorem | strle1g 12508 | Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) | ||
Theorem | strle2g 12509 | Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) | ||
Theorem | strle3g 12510 | Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 & ⊢ 𝐽 < 𝐾 & ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉) | ||
Theorem | plusgndx 12511 | Index value of the df-plusg 12493 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (+g‘ndx) = 2 | ||
Theorem | plusgid 12512 | Utility theorem: index-independent form of df-plusg 12493. (Contributed by NM, 20-Oct-2012.) |
⊢ +g = Slot (+g‘ndx) | ||
Theorem | plusgslid 12513 | Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | ||
Theorem | opelstrsl 12514 | The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) | ||
Theorem | opelstrbas 12515 | The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) | ||
Theorem | 1strstrg 12516 | A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) | ||
Theorem | 1strbas 12517 | The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | 2strstrg 12518 | A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) | ||
Theorem | 2strbasg 12519 | The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) | ||
Theorem | 2stropg 12520 | The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) | ||
Theorem | 2strstr1g 12521 | A constructed two-slot structure. Version of 2strstrg 12518 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) | ||
Theorem | 2strbas1g 12522 | The base set of a constructed two-slot structure. Version of 2strbasg 12519 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) | ||
Theorem | 2strop1g 12523 | The other slot of a constructed two-slot structure. Version of 2stropg 12520 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) | ||
Theorem | basendxnplusgndx 12524 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | grpstrg 12525 | A constructed group is a structure on 1...2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) | ||
Theorem | grpbaseg 12526 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpplusgg 12527 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (+g‘𝐺)) | ||
Theorem | mulrndx 12528 | Index value of the df-mulr 12494 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (.r‘ndx) = 3 | ||
Theorem | mulrid 12529 | Utility theorem: index-independent form of df-mulr 12494. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ .r = Slot (.r‘ndx) | ||
Theorem | mulrslid 12530 | Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.) |
⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | ||
Theorem | plusgndxnmulrndx 12531 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
Theorem | basendxnmulrndx 12532 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | rngstrg 12533 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) | ||
Theorem | rngbaseg 12534 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) | ||
Theorem | rngplusgg 12535 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + = (+g‘𝑅)) | ||
Theorem | rngmulrg 12536 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · = (.r‘𝑅)) | ||
Theorem | starvndx 12537 | Index value of the df-starv 12495 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (*𝑟‘ndx) = 4 | ||
Theorem | starvid 12538 | Utility theorem: index-independent form of df-starv 12495. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
Theorem | starvslid 12539 | Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.) |
⊢ (*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ) | ||
Theorem | srngstrd 12540 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) | ||
Theorem | srngbased 12541 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | ||
Theorem | srngplusgd 12542 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
Theorem | srngmulrd 12543 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → · = (.r‘𝑅)) | ||
Theorem | srnginvld 12544 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌) ⇒ ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) | ||
Theorem | scandx 12545 | Index value of the df-sca 12496 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (Scalar‘ndx) = 5 | ||
Theorem | scaid 12546 | Utility theorem: index-independent form of scalar df-sca 12496. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ Scalar = Slot (Scalar‘ndx) | ||
Theorem | scaslid 12547 | Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | ||
Theorem | vscandx 12548 | Index value of the df-vsca 12497 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ( ·𝑠 ‘ndx) = 6 | ||
Theorem | vscaid 12549 | Utility theorem: index-independent form of scalar product df-vsca 12497. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
Theorem | vscaslid 12550 | Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | ||
Theorem | lmodstrd 12551 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) | ||
Theorem | lmodbased 12552 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | ||
Theorem | lmodplusgd 12553 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → + = (+g‘𝑊)) | ||
Theorem | lmodscad 12554 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) | ||
Theorem | lmodvscad 12555 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) ⇒ ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) | ||
Theorem | ipndx 12556 | Index value of the df-ip 12498 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (·𝑖‘ndx) = 8 | ||
Theorem | ipid 12557 | Utility theorem: index-independent form of df-ip 12498. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
Theorem | ipslid 12558 | Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.) |
⊢ (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ) | ||
Theorem | ipsstrd 12559 | A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) | ||
Theorem | ipsbased 12560 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) | ||
Theorem | ipsaddgd 12561 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + = (+g‘𝐴)) | ||
Theorem | ipsmulrd 12562 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × = (.r‘𝐴)) | ||
Theorem | ipsscad 12563 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) | ||
Theorem | ipsvscad 12564 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = ( ·𝑠 ‘𝐴)) | ||
Theorem | ipsipd 12565 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 = (·𝑖‘𝐴)) | ||
Theorem | tsetndx 12566 | Index value of the df-tset 12499 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (TopSet‘ndx) = 9 | ||
Theorem | tsetid 12567 | Utility theorem: index-independent form of df-tset 12499. (Contributed by NM, 20-Oct-2012.) |
⊢ TopSet = Slot (TopSet‘ndx) | ||
Theorem | tsetslid 12568 | Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.) |
⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | ||
Theorem | topgrpstrd 12569 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) | ||
Theorem | topgrpbasd 12570 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | ||
Theorem | topgrpplusgd 12571 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + = (+g‘𝑊)) | ||
Theorem | topgrptsetd 12572 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | plendx 12573 | Index value of the df-ple 12500 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ (le‘ndx) = ;10 | ||
Theorem | pleid 12574 | Utility theorem: self-referencing, index-independent form of df-ple 12500. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
⊢ le = Slot (le‘ndx) | ||
Theorem | pleslid 12575 | Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | ||
Theorem | dsndx 12576 | Index value of the df-ds 12502 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (dist‘ndx) = ;12 | ||
Theorem | dsid 12577 | Utility theorem: index-independent form of df-ds 12502. (Contributed by Mario Carneiro, 23-Dec-2013.) |
⊢ dist = Slot (dist‘ndx) | ||
Theorem | dsslid 12578 | Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.) |
⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | ||
Syntax | crest 12579 | Extend class notation with the function returning a subspace topology. |
class ↾t | ||
Syntax | ctopn 12580 | Extend class notation with the topology extractor function. |
class TopOpen | ||
Definition | df-rest 12581* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
Definition | df-topn 12582 | Define the topology extractor function. This differs from df-tset 12499 when a structure has been restricted using df-ress 12424; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
Theorem | restfn 12583 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
⊢ ↾t Fn (V × V) | ||
Theorem | topnfn 12584 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen Fn V | ||
Theorem | restval 12585* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
Theorem | elrest 12586* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
Theorem | elrestr 12587 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
Theorem | restid2 12588 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
Theorem | restsspw 12589 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
Theorem | restid 12590 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
Theorem | topnvalg 12591 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) | ||
Theorem | topnidg 12592 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊)) | ||
Theorem | topnpropgd 12593 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
Syntax | ctg 12594 | Extend class notation with a function that converts a basis to its corresponding topology. |
class topGen | ||
Syntax | cpt 12595 | Extend class notation with a function whose value is a product topology. |
class ∏t | ||
Syntax | c0g 12596 | Extend class notation with group identity element. |
class 0g | ||
Syntax | cgsu 12597 | Extend class notation to include finitely supported group sums. |
class Σg | ||
Definition | df-0g 12598* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum 12599. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.) |
⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
Definition | df-gsum 12599* |
Define the group sum for the structure 𝐺 of a finite sequence of
elements whose values are defined by the expression 𝐵 and
whose set
of indices is 𝐴. It may be viewed as a product (if
𝐺
is a
multiplication), a sum (if 𝐺 is an addition) or any other
operation.
The variable 𝑘 is normally a free variable in 𝐵 (i.e.,
𝐵
can
be thought of as 𝐵(𝑘)). The definition is meaningful in
different contexts, depending on the size of the index set 𝐴 and
each demanding different properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., (𝐵(1) + 𝐵(2)) + 𝐵(3), etc. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | ||
Definition | df-topgen 12600* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.) |
⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |