| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 2 | fvssunirng 5576 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑊 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| 4 | rnexg 4932 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 5 | uniexg 4475 | . . 3 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) |
| 7 | ssexg 4173 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
| 8 | 3, 6, 7 | syl2anr 290 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∪ cuni 3840 ran crn 4665 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fvex 5581 ovexg 5959 rdgivallem 6448 frecabex 6465 mapsnconst 6762 cc2lem 7349 addvalex 7928 uzennn 10545 seq1g 10572 seqp1g 10575 seqclg 10581 seqm1g 10583 seqfeq4g 10640 absval 11183 climmpt 11482 strnfvnd 12723 prdsex 12971 prdsval 12975 prdsbaslemss 12976 prdsbas 12978 prdsplusgfval 12986 prdsmulrfval 12988 pwsplusgval 12997 pwsmulrval 12998 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfnlemg 13016 imasaddvallemg 13017 gsumfzval 13093 gsumval2 13099 gsumsplit1r 13100 gsumprval 13101 gsumfzz 13197 gsumwsubmcl 13198 gsumfzcl 13201 grpsubval 13248 mulgval 13328 mulgfng 13330 mulgnngsum 13333 znval 14268 znle 14269 znbaslemnn 14271 znbas 14276 znzrhval 14279 znzrhfo 14280 znleval 14285 iscnp4 14538 cnpnei 14539 |
| Copyright terms: Public domain | W3C validator |