| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 2 | fvssunirng 5573 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑊 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| 4 | rnexg 4931 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 5 | uniexg 4474 | . . 3 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) |
| 7 | ssexg 4172 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
| 8 | 3, 6, 7 | syl2anr 290 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∪ cuni 3839 ran crn 4664 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: fvex 5578 ovexg 5956 rdgivallem 6439 frecabex 6456 mapsnconst 6753 cc2lem 7333 addvalex 7911 uzennn 10528 seq1g 10555 seqp1g 10558 seqclg 10564 seqm1g 10566 seqfeq4g 10623 absval 11166 climmpt 11465 strnfvnd 12698 prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfnlemg 12957 imasaddvallemg 12958 gsumfzval 13034 gsumval2 13040 gsumsplit1r 13041 gsumprval 13042 gsumfzz 13127 gsumwsubmcl 13128 gsumfzcl 13131 grpsubval 13178 mulgval 13252 mulgfng 13254 mulgnngsum 13257 znval 14192 znle 14193 znbaslemnn 14195 znbas 14200 znzrhval 14203 znzrhfo 14204 znleval 14209 iscnp4 14454 cnpnei 14455 |
| Copyright terms: Public domain | W3C validator |