| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2784 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 2 | fvssunirng 5598 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑊 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| 4 | rnexg 4948 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 5 | uniexg 4490 | . . 3 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) |
| 7 | ssexg 4187 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
| 8 | 3, 6, 7 | syl2anr 290 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3167 ∪ cuni 3852 ran crn 4680 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-cnv 4687 df-dm 4689 df-rn 4690 df-iota 5237 df-fv 5284 |
| This theorem is referenced by: fvex 5603 ovexg 5985 rdgivallem 6474 frecabex 6491 mapsnconst 6788 cc2lem 7385 addvalex 7964 uzennn 10588 seq1g 10615 seqp1g 10618 seqclg 10624 seqm1g 10626 seqfeq4g 10683 lswwrd 11047 ccatlen 11059 ccatval2 11062 ccatvalfn 11065 eqs1 11090 swrdlen 11113 swrdfv 11114 swrdwrdsymbg 11125 swrdswrd 11164 absval 11356 climmpt 11655 strnfvnd 12896 prdsex 13145 prdsval 13149 prdsbaslemss 13150 prdsbas 13152 prdsplusgfval 13160 prdsmulrfval 13162 pwsplusgval 13171 pwsmulrval 13172 imasex 13181 imasival 13182 imasbas 13183 imasplusg 13184 imasmulr 13185 imasaddfnlemg 13190 imasaddvallemg 13191 gsumfzval 13267 gsumval2 13273 gsumsplit1r 13274 gsumprval 13275 gsumfzz 13371 gsumwsubmcl 13372 gsumfzcl 13375 grpsubval 13422 mulgval 13502 mulgfng 13504 mulgnngsum 13507 znval 14442 znle 14443 znbaslemnn 14445 znbas 14450 znzrhval 14453 znzrhfo 14454 znleval 14459 iscnp4 14734 cnpnei 14735 |
| Copyright terms: Public domain | W3C validator |