| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 2 | fvssunirng 5644 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑊 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| 4 | rnexg 4989 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 5 | uniexg 4530 | . . 3 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) |
| 7 | ssexg 4223 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
| 8 | 3, 6, 7 | syl2anr 290 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3888 ran crn 4720 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-cnv 4727 df-dm 4729 df-rn 4730 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: fvex 5649 ovexg 6041 rdgivallem 6533 frecabex 6550 mapsnconst 6849 cc2lem 7460 addvalex 8039 uzennn 10666 seq1g 10693 seqp1g 10696 seqclg 10702 seqm1g 10704 seqfeq4g 10761 lswwrd 11126 ccatlen 11138 ccatval2 11141 ccatvalfn 11144 eqs1 11169 swrdlen 11192 swrdfv 11193 swrdwrdsymbg 11204 swrdswrd 11245 absval 11520 climmpt 11819 strnfvnd 13060 prdsex 13310 prdsval 13314 prdsbaslemss 13315 prdsbas 13317 prdsplusgfval 13325 prdsmulrfval 13327 pwsplusgval 13336 pwsmulrval 13337 imasex 13346 imasival 13347 imasbas 13348 imasplusg 13349 imasmulr 13350 imasaddfnlemg 13355 imasaddvallemg 13356 gsumfzval 13432 gsumval2 13438 gsumsplit1r 13439 gsumprval 13440 gsumfzz 13536 gsumwsubmcl 13537 gsumfzcl 13540 grpsubval 13587 mulgval 13667 mulgfng 13669 mulgnngsum 13672 znval 14608 znle 14609 znbaslemnn 14611 znbas 14616 znzrhval 14619 znzrhfo 14620 znleval 14625 iscnp4 14900 cnpnei 14901 wlkvtxiedg 16066 wlkvtxiedgg 16067 wlk1walkdom 16080 wlklenvclwlk 16094 |
| Copyright terms: Public domain | W3C validator |