| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvexg | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvexg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2791 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 2 | fvssunirng 5618 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑊 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
| 4 | rnexg 4965 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 5 | uniexg 4507 | . . 3 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) |
| 7 | ssexg 4202 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
| 8 | 3, 6, 7 | syl2anr 290 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 ∪ cuni 3867 ran crn 4697 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-cnv 4704 df-dm 4706 df-rn 4707 df-iota 5254 df-fv 5302 |
| This theorem is referenced by: fvex 5623 ovexg 6008 rdgivallem 6497 frecabex 6514 mapsnconst 6811 cc2lem 7420 addvalex 7999 uzennn 10625 seq1g 10652 seqp1g 10655 seqclg 10661 seqm1g 10663 seqfeq4g 10720 lswwrd 11084 ccatlen 11096 ccatval2 11099 ccatvalfn 11102 eqs1 11127 swrdlen 11150 swrdfv 11151 swrdwrdsymbg 11162 swrdswrd 11203 absval 11478 climmpt 11777 strnfvnd 13018 prdsex 13268 prdsval 13272 prdsbaslemss 13273 prdsbas 13275 prdsplusgfval 13283 prdsmulrfval 13285 pwsplusgval 13294 pwsmulrval 13295 imasex 13304 imasival 13305 imasbas 13306 imasplusg 13307 imasmulr 13308 imasaddfnlemg 13313 imasaddvallemg 13314 gsumfzval 13390 gsumval2 13396 gsumsplit1r 13397 gsumprval 13398 gsumfzz 13494 gsumwsubmcl 13495 gsumfzcl 13498 grpsubval 13545 mulgval 13625 mulgfng 13627 mulgnngsum 13630 znval 14565 znle 14566 znbaslemnn 14568 znbas 14573 znzrhval 14576 znzrhfo 14577 znleval 14582 iscnp4 14857 cnpnei 14858 |
| Copyright terms: Public domain | W3C validator |