![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvexg | GIF version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvexg | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2749 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
2 | fvssunirng 5531 | . . 3 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑊 → (𝐹‘𝐴) ⊆ ∪ ran 𝐹) |
4 | rnexg 4893 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
5 | uniexg 4440 | . . 3 ⊢ (ran 𝐹 ∈ V → ∪ ran 𝐹 ∈ V) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 ∈ 𝑉 → ∪ ran 𝐹 ∈ V) |
7 | ssexg 4143 | . 2 ⊢ (((𝐹‘𝐴) ⊆ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ∈ V) → (𝐹‘𝐴) ∈ V) | |
8 | 3, 6, 7 | syl2anr 290 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2738 ⊆ wss 3130 ∪ cuni 3810 ran crn 4628 ‘cfv 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-cnv 4635 df-dm 4637 df-rn 4638 df-iota 5179 df-fv 5225 |
This theorem is referenced by: fvex 5536 ovexg 5909 rdgivallem 6382 frecabex 6399 mapsnconst 6694 cc2lem 7265 addvalex 7843 uzennn 10436 absval 11010 climmpt 11308 strnfvnd 12482 prdsex 12718 imasex 12726 imasival 12727 imasbas 12728 imasplusg 12729 imasmulr 12730 imasaddfnlemg 12735 imasaddvallemg 12736 grpsubval 12919 mulgval 12986 mulgfng 12987 iscnp4 13721 cnpnei 13722 |
Copyright terms: Public domain | W3C validator |