ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod GIF version

Theorem clim2prod 11531
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1 𝑍 = (ℤ𝑀)
clim2prod.2 (𝜑𝑁𝑍)
clim2prod.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2prod.4 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2prod (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem clim2prod
Dummy variables 𝑣 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2prod.1 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssz 9536 . . . . 5 (ℤ𝑀) ⊆ ℤ
42, 3eqsstri 3187 . . . 4 𝑍 ⊆ ℤ
5 clim2prod.2 . . . 4 (𝜑𝑁𝑍)
64, 5sselid 3153 . . 3 (𝜑𝑁 ∈ ℤ)
76peano2zd 9367 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2prod.4 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)
95, 2eleqtrdi 2270 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzel2 9522 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
119, 10syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2prod.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
132, 11, 12prodf 11530 . . 3 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 5ffvelcdmd 5648 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 seqex 10433 . . 3 seq𝑀( · , 𝐹) ∈ V
1615a1i 9 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
17 peano2uz 9572 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
18 uzss 9537 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
199, 17, 183syl 17 . . . . . . 7 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
2019, 2sseqtrrdi 3204 . . . . . 6 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
2120sselda 3155 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
2221, 12syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
231, 7, 22prodf 11530 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
2423ffvelcdmda 5647 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑘) ∈ ℂ)
25 fveq2 5511 . . . . . 6 (𝑥 = (𝑁 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑁 + 1)))
26 fveq2 5511 . . . . . . 7 (𝑥 = (𝑁 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))
2726oveq2d 5885 . . . . . 6 (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))
2825, 27eqeq12d 2192 . . . . 5 (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))
2928imbi2d 230 . . . 4 (𝑥 = (𝑁 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))))
30 fveq2 5511 . . . . . 6 (𝑥 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑛))
31 fveq2 5511 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑛))
3231oveq2d 5885 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))
3330, 32eqeq12d 2192 . . . . 5 (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))))
3433imbi2d 230 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))))
35 fveq2 5511 . . . . . 6 (𝑥 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
36 fveq2 5511 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))
3736oveq2d 5885 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
3835, 37eqeq12d 2192 . . . . 5 (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))
3938imbi2d 230 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
40 fveq2 5511 . . . . . 6 (𝑥 = 𝑘 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑘))
41 fveq2 5511 . . . . . . 7 (𝑥 = 𝑘 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑘))
4241oveq2d 5885 . . . . . 6 (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))
4340, 42eqeq12d 2192 . . . . 5 (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))
4443imbi2d 230 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))))
452eleq2i 2244 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4645, 12sylan2br 288 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
47 mulcl 7929 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
4847adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
499, 46, 48seq3p1 10448 . . . . . 6 (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
507, 22, 48seq3-1 10446 . . . . . . 7 (𝜑 → (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
5150oveq2d 5885 . . . . . 6 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
5249, 51eqtr4d 2213 . . . . 5 (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))
5352a1i 9 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))
5419sselda 3155 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ𝑀))
5546adantlr 477 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
5647adantl 277 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
5754, 55, 56seq3p1 10448 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
5857adantr 276 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
59 oveq1 5876 . . . . . . . . 9 ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))))
6059adantl 277 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))))
6114adantr 276 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
6223ffvelcdmda 5647 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑛) ∈ ℂ)
63 peano2uz 9572 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
6463, 2eleqtrrdi 2271 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
6554, 64syl 14 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑛 + 1) ∈ 𝑍)
6612ralrimiva 2550 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
67 fveq2 5511 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6867eleq1d 2246 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
6968rspcv 2837 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7066, 69mpan9 281 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
7165, 70syldan 282 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
7261, 62, 71mulassd 7971 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7372adantr 276 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
74 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
7522adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
7674, 75, 56seq3p1 10448 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
7776oveq2d 5885 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7877adantr 276 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7973, 78eqtr4d 2213 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
8058, 60, 793eqtrd 2214 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
8180exp31 364 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8281com12 30 . . . . 5 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8382a2d 26 . . . 4 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8429, 34, 39, 44, 53, 83uzind4 9577 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))
8584impcom 125 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))
861, 7, 8, 14, 16, 24, 85climmulc2 11323 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  1c1 7803   + caddc 7805   · cmul 7807  cz 9242  cuz 9517  seqcseq 10431  cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by:  ntrivcvgap  11540
  Copyright terms: Public domain W3C validator