ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2prod GIF version

Theorem clim2prod 11546
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1 𝑍 = (β„€β‰₯β€˜π‘€)
clim2prod.2 (πœ‘ β†’ 𝑁 ∈ 𝑍)
clim2prod.3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
clim2prod.4 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2prod (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· 𝐴))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   πœ‘,π‘˜   π‘˜,𝑀   π‘˜,𝑁   π‘˜,𝑍

Proof of Theorem clim2prod
Dummy variables 𝑣 𝑛 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2 (β„€β‰₯β€˜(𝑁 + 1)) = (β„€β‰₯β€˜(𝑁 + 1))
2 clim2prod.1 . . . . 5 𝑍 = (β„€β‰₯β€˜π‘€)
3 uzssz 9546 . . . . 5 (β„€β‰₯β€˜π‘€) βŠ† β„€
42, 3eqsstri 3187 . . . 4 𝑍 βŠ† β„€
5 clim2prod.2 . . . 4 (πœ‘ β†’ 𝑁 ∈ 𝑍)
64, 5sselid 3153 . . 3 (πœ‘ β†’ 𝑁 ∈ β„€)
76peano2zd 9377 . 2 (πœ‘ β†’ (𝑁 + 1) ∈ β„€)
8 clim2prod.4 . 2 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹) ⇝ 𝐴)
95, 2eleqtrdi 2270 . . . . 5 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
10 eluzel2 9532 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
119, 10syl 14 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
12 clim2prod.3 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
132, 11, 12prodf 11545 . . 3 (πœ‘ β†’ seq𝑀( Β· , 𝐹):π‘βŸΆβ„‚)
1413, 5ffvelcdmd 5652 . 2 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
15 seqex 10446 . . 3 seq𝑀( Β· , 𝐹) ∈ V
1615a1i 9 . 2 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ∈ V)
17 peano2uz 9582 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘€))
18 uzss 9547 . . . . . . . 8 ((𝑁 + 1) ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† (β„€β‰₯β€˜π‘€))
199, 17, 183syl 17 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† (β„€β‰₯β€˜π‘€))
2019, 2sseqtrrdi 3204 . . . . . 6 (πœ‘ β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† 𝑍)
2120sselda 3155 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘˜ ∈ 𝑍)
2221, 12syldan 282 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
231, 7, 22prodf 11545 . . 3 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹):(β„€β‰₯β€˜(𝑁 + 1))βŸΆβ„‚)
2423ffvelcdmda 5651 . 2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜) ∈ β„‚)
25 fveq2 5515 . . . . . 6 (π‘₯ = (𝑁 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)))
26 fveq2 5515 . . . . . . 7 (π‘₯ = (𝑁 + 1) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))
2726oveq2d 5890 . . . . . 6 (π‘₯ = (𝑁 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))
2825, 27eqeq12d 2192 . . . . 5 (π‘₯ = (𝑁 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))))
2928imbi2d 230 . . . 4 (π‘₯ = (𝑁 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))))
30 fveq2 5515 . . . . . 6 (π‘₯ = 𝑛 β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜π‘›))
31 fveq2 5515 . . . . . . 7 (π‘₯ = 𝑛 β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))
3231oveq2d 5890 . . . . . 6 (π‘₯ = 𝑛 β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)))
3330, 32eqeq12d 2192 . . . . 5 (π‘₯ = 𝑛 β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))))
3433imbi2d 230 . . . 4 (π‘₯ = 𝑛 β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)))))
35 fveq2 5515 . . . . . 6 (π‘₯ = (𝑛 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)))
36 fveq2 5515 . . . . . . 7 (π‘₯ = (𝑛 + 1) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)))
3736oveq2d 5890 . . . . . 6 (π‘₯ = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
3835, 37eqeq12d 2192 . . . . 5 (π‘₯ = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)))))
3938imbi2d 230 . . . 4 (π‘₯ = (𝑛 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
40 fveq2 5515 . . . . . 6 (π‘₯ = π‘˜ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜π‘˜))
41 fveq2 5515 . . . . . . 7 (π‘₯ = π‘˜ β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))
4241oveq2d 5890 . . . . . 6 (π‘₯ = π‘˜ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))
4340, 42eqeq12d 2192 . . . . 5 (π‘₯ = π‘˜ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))))
4443imbi2d 230 . . . 4 (π‘₯ = π‘˜ β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))))
452eleq2i 2244 . . . . . . . 8 (π‘˜ ∈ 𝑍 ↔ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
4645, 12sylan2br 288 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
47 mulcl 7937 . . . . . . . 8 ((π‘˜ ∈ β„‚ ∧ 𝑣 ∈ β„‚) β†’ (π‘˜ Β· 𝑣) ∈ β„‚)
4847adantl 277 . . . . . . 7 ((πœ‘ ∧ (π‘˜ ∈ β„‚ ∧ 𝑣 ∈ β„‚)) β†’ (π‘˜ Β· 𝑣) ∈ β„‚)
499, 46, 48seq3p1 10461 . . . . . 6 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
507, 22, 48seq3-1 10459 . . . . . . 7 (πœ‘ β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)) = (πΉβ€˜(𝑁 + 1)))
5150oveq2d 5890 . . . . . 6 (πœ‘ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
5249, 51eqtr4d 2213 . . . . 5 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))
5352a1i 9 . . . 4 ((𝑁 + 1) ∈ β„€ β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))))
5419sselda 3155 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
5546adantlr 477 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
5647adantl 277 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (π‘˜ ∈ β„‚ ∧ 𝑣 ∈ β„‚)) β†’ (π‘˜ Β· 𝑣) ∈ β„‚)
5754, 55, 56seq3p1 10461 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
5857adantr 276 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
59 oveq1 5881 . . . . . . . . 9 ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))) = (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))))
6059adantl 277 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))) = (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))))
6114adantr 276 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
6223ffvelcdmda 5651 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) ∈ β„‚)
63 peano2uz 9582 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜π‘€))
6463, 2eleqtrrdi 2271 . . . . . . . . . . . . 13 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ 𝑍)
6554, 64syl 14 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (𝑛 + 1) ∈ 𝑍)
6612ralrimiva 2550 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝑍 (πΉβ€˜π‘˜) ∈ β„‚)
67 fveq2 5515 . . . . . . . . . . . . . . 15 (π‘˜ = (𝑛 + 1) β†’ (πΉβ€˜π‘˜) = (πΉβ€˜(𝑛 + 1)))
6867eleq1d 2246 . . . . . . . . . . . . . 14 (π‘˜ = (𝑛 + 1) β†’ ((πΉβ€˜π‘˜) ∈ β„‚ ↔ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
6968rspcv 2837 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ 𝑍 β†’ (βˆ€π‘˜ ∈ 𝑍 (πΉβ€˜π‘˜) ∈ β„‚ β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
7066, 69mpan9 281 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑛 + 1) ∈ 𝑍) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
7165, 70syldan 282 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
7261, 62, 71mulassd 7980 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7372adantr 276 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
74 simpr 110 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)))
7522adantlr 477 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
7674, 75, 56seq3p1 10461 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
7776oveq2d 5890 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7877adantr 276 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7973, 78eqtr4d 2213 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
8058, 60, 793eqtrd 2214 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
8180exp31 364 . . . . . 6 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8281com12 30 . . . . 5 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (πœ‘ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8382a2d 26 . . . 4 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8429, 34, 39, 44, 53, 83uzind4 9587 . . 3 (π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))))
8584impcom 125 . 2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))
861, 7, 8, 14, 16, 24, 85climmulc2 11338 1 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· 𝐴))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2737   βŠ† wss 3129   class class class wbr 4003  β€˜cfv 5216  (class class class)co 5874  β„‚cc 7808  1c1 7811   + caddc 7813   Β· cmul 7815  β„€cz 9252  β„€β‰₯cuz 9527  seqcseq 10444   ⇝ cli 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286
This theorem is referenced by:  ntrivcvgap  11555
  Copyright terms: Public domain W3C validator