ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnexg GIF version

Theorem rnexg 4869
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 4417 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4417 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 3286 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4867 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3151 . . 3 ran 𝐴 𝐴
6 ssexg 4121 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 421 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  Vcvv 2726  cun 3114  wss 3116   cuni 3789  dom cdm 4604  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  rnex  4871  imaexg  4958  xpexr2m  5045  elxp4  5091  elxp5  5092  cnvexg  5141  coexg  5148  fvexg  5505  cofunexg  6077  funrnex  6082  abrexexg  6086  2ndvalg  6111  tposexg  6226  iunon  6252  fopwdom  6802  djuexb  7009  focdmex  10700  shftfvalg  10760  ovshftex  10761  restval  12562  txvalex  12894  txval  12895  blbas  13073  xmettxlem  13149  xmettx  13150
  Copyright terms: Public domain W3C validator