ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnexg GIF version

Theorem rnexg 4943
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 4486 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4486 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 3337 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4941 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3202 . . 3 ran 𝐴 𝐴
6 ssexg 4183 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 424 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  Vcvv 2772  cun 3164  wss 3166   cuni 3850  dom cdm 4675  ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  rnex  4946  imaexg  5036  xpexr2m  5124  elxp4  5170  elxp5  5171  cnvexg  5220  coexg  5227  fvexg  5595  cofunexg  6194  funrnex  6199  abrexexg  6203  2ndvalg  6229  tposexg  6344  iunon  6370  fopwdom  6933  djuexb  7146  shftfvalg  11129  ovshftex  11130  restval  13077  ptex  13096  imasex  13137  txvalex  14726  txval  14727  blbas  14905  xmettxlem  14981  xmettx  14982  edgopval  15654  edgstruct  15656
  Copyright terms: Public domain W3C validator