ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnexg GIF version

Theorem rnexg 4740
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 4299 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4299 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 3187 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4738 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3056 . . 3 ran 𝐴 𝐴
6 ssexg 4007 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 418 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448  Vcvv 2641  cun 3019  wss 3021   cuni 3683  dom cdm 4477  ran crn 4478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-cnv 4485  df-dm 4487  df-rn 4488
This theorem is referenced by:  rnex  4742  imaexg  4829  xpexr2m  4916  elxp4  4962  elxp5  4963  cnvexg  5012  coexg  5019  fvexg  5372  cofunexg  5940  funrnex  5943  abrexexg  5947  2ndvalg  5972  tposexg  6085  iunon  6111  fopwdom  6659  djuexb  6844  focdmex  10374  shftfvalg  10431  ovshftex  10432  restval  11908  txvalex  12204  txval  12205  blbas  12361
  Copyright terms: Public domain W3C validator