ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnexg GIF version

Theorem rnexg 4988
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 4529 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4529 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 3368 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4986 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3233 . . 3 ran 𝐴 𝐴
6 ssexg 4222 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 424 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  cun 3195  wss 3197   cuni 3887  dom cdm 4718  ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  rnex  4991  imaexg  5081  xpexr2m  5169  elxp4  5215  elxp5  5216  cnvexg  5265  coexg  5272  fvexg  5645  cofunexg  6252  funrnex  6257  abrexexg  6261  2ndvalg  6287  tposexg  6402  iunon  6428  fopwdom  6993  djuexb  7207  shftfvalg  11324  ovshftex  11325  restval  13273  ptex  13292  imasex  13333  txvalex  14922  txval  14923  blbas  15101  xmettxlem  15177  xmettx  15178  edgvalg  15854  edgopval  15856  edgstruct  15858  usgrausgrien  15961  ausgrumgrien  15962  ausgrusgrien  15963
  Copyright terms: Public domain W3C validator