ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnexg GIF version

Theorem rnexg 4928
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 4471 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4471 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 3324 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4926 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3189 . . 3 ran 𝐴 𝐴
6 ssexg 4169 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 424 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  Vcvv 2760  cun 3152  wss 3154   cuni 3836  dom cdm 4660  ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  rnex  4930  imaexg  5020  xpexr2m  5108  elxp4  5154  elxp5  5155  cnvexg  5204  coexg  5211  fvexg  5574  cofunexg  6163  funrnex  6168  abrexexg  6172  2ndvalg  6198  tposexg  6313  iunon  6339  fopwdom  6894  djuexb  7105  shftfvalg  10965  ovshftex  10966  restval  12859  ptex  12878  imasex  12891  txvalex  14433  txval  14434  blbas  14612  xmettxlem  14688  xmettx  14689
  Copyright terms: Public domain W3C validator