ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnexg GIF version

Theorem rnexg 4957
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
rnexg (𝐴𝑉 → ran 𝐴 ∈ V)

Proof of Theorem rnexg
StepHypRef Expression
1 uniexg 4499 . 2 (𝐴𝑉 𝐴 ∈ V)
2 uniexg 4499 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
3 ssun2 3341 . . . 4 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
4 dmrnssfld 4955 . . . 4 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
53, 4sstri 3206 . . 3 ran 𝐴 𝐴
6 ssexg 4194 . . 3 ((ran 𝐴 𝐴 𝐴 ∈ V) → ran 𝐴 ∈ V)
75, 6mpan 424 . 2 ( 𝐴 ∈ V → ran 𝐴 ∈ V)
81, 2, 73syl 17 1 (𝐴𝑉 → ran 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Vcvv 2773  cun 3168  wss 3170   cuni 3859  dom cdm 4688  ran crn 4689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-cnv 4696  df-dm 4698  df-rn 4699
This theorem is referenced by:  rnex  4960  imaexg  5050  xpexr2m  5138  elxp4  5184  elxp5  5185  cnvexg  5234  coexg  5241  fvexg  5613  cofunexg  6212  funrnex  6217  abrexexg  6221  2ndvalg  6247  tposexg  6362  iunon  6388  fopwdom  6953  djuexb  7167  shftfvalg  11214  ovshftex  11215  restval  13162  ptex  13181  imasex  13222  txvalex  14811  txval  14812  blbas  14990  xmettxlem  15066  xmettx  15067  edgvalg  15741  edgopval  15743  edgstruct  15745
  Copyright terms: Public domain W3C validator