ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest GIF version

Theorem cnrest 14471
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1 𝑋 = 𝐽
Assertion
Ref Expression
cnrest ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))

Proof of Theorem cnrest
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5 𝑋 = 𝐽
2 eqid 2196 . . . . 5 𝐾 = 𝐾
31, 2cnf 14440 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 276 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 simpr 110 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5fssresd 5434 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴):𝐴 𝐾)
7 cnvresima 5159 . . . 4 ((𝐹𝐴) “ 𝑜) = ((𝐹𝑜) ∩ 𝐴)
8 cntop1 14437 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
98adantr 276 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
109adantr 276 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐽 ∈ Top)
111topopn 14244 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
12 ssexg 4172 . . . . . . . . 9 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
1312ancoms 268 . . . . . . . 8 ((𝑋𝐽𝐴𝑋) → 𝐴 ∈ V)
1411, 13sylan 283 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ V)
158, 14sylan 283 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1615adantr 276 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐴 ∈ V)
17 cnima 14456 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
1817adantlr 477 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
19 elrestr 12918 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (𝐹𝑜) ∈ 𝐽) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
2010, 16, 18, 19syl3anc 1249 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
217, 20eqeltrid 2283 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
2221ralrimiva 2570 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
231toptopon 14254 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
248, 23sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
25 resttopon 14407 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2624, 25sylan 283 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
27 cntop2 14438 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 276 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 14254 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 122 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscn 14433 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
3226, 30, 31syl2anc 411 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
336, 22, 32mpbir2and 946 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cin 3156  wss 3157   cuni 3839  ccnv 4662  cres 4665  cima 4666  wf 5254  cfv 5258  (class class class)co 5922  t crest 12910  Topctop 14233  TopOnctopon 14246   Cn ccn 14421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-rest 12912  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424
This theorem is referenced by:  cnmpt1res  14532  cnmpt2res  14533  hmeores  14551
  Copyright terms: Public domain W3C validator