| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnrest.1 | 
. . . . 5
⊢ 𝑋 = ∪
𝐽 | 
| 2 |   | eqid 2196 | 
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 | 
| 3 | 1, 2 | cnf 14440 | 
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) | 
| 4 | 3 | adantr 276 | 
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) | 
| 5 |   | simpr 110 | 
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | 
| 6 | 4, 5 | fssresd 5434 | 
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) | 
| 7 |   | cnvresima 5159 | 
. . . 4
⊢ (◡(𝐹 ↾ 𝐴) “ 𝑜) = ((◡𝐹 “ 𝑜) ∩ 𝐴) | 
| 8 |   | cntop1 14437 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | 
| 9 | 8 | adantr 276 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) | 
| 10 | 9 | adantr 276 | 
. . . . 5
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐽 ∈ Top) | 
| 11 | 1 | topopn 14244 | 
. . . . . . . 8
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | 
| 12 |   | ssexg 4172 | 
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | 
| 13 | 12 | ancoms 268 | 
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) | 
| 14 | 11, 13 | sylan 283 | 
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) | 
| 15 | 8, 14 | sylan 283 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) | 
| 16 | 15 | adantr 276 | 
. . . . 5
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → 𝐴 ∈ V) | 
| 17 |   | cnima 14456 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) | 
| 18 | 17 | adantlr 477 | 
. . . . 5
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡𝐹 “ 𝑜) ∈ 𝐽) | 
| 19 |   | elrestr 12918 | 
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (◡𝐹 “ 𝑜) ∈ 𝐽) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | 
| 20 | 10, 16, 18, 19 | syl3anc 1249 | 
. . . 4
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → ((◡𝐹 “ 𝑜) ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | 
| 21 | 7, 20 | eqeltrid 2283 | 
. . 3
⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑜 ∈ 𝐾) → (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) | 
| 22 | 21 | ralrimiva 2570 | 
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)) | 
| 23 | 1 | toptopon 14254 | 
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 24 | 8, 23 | sylib 122 | 
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 25 |   | resttopon 14407 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | 
| 26 | 24, 25 | sylan 283 | 
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | 
| 27 |   | cntop2 14438 | 
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | 
| 28 | 27 | adantr 276 | 
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ Top) | 
| 29 | 2 | toptopon 14254 | 
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 30 | 28, 29 | sylib 122 | 
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 31 |   | iscn 14433 | 
. . 3
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾))
→ ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) | 
| 32 | 26, 30, 31 | syl2anc 411 | 
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑜 ∈ 𝐾 (◡(𝐹 ↾ 𝐴) “ 𝑜) ∈ (𝐽 ↾t 𝐴)))) | 
| 33 | 6, 22, 32 | mpbir2and 946 | 
1
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |