Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest GIF version

Theorem cnrest 12444
 Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnrest.1 𝑋 = 𝐽
Assertion
Ref Expression
cnrest ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))

Proof of Theorem cnrest
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 cnrest.1 . . . . 5 𝑋 = 𝐽
2 eqid 2140 . . . . 5 𝐾 = 𝐾
31, 2cnf 12413 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 274 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 simpr 109 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5fssresd 5307 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴):𝐴 𝐾)
7 cnvresima 5036 . . . 4 ((𝐹𝐴) “ 𝑜) = ((𝐹𝑜) ∩ 𝐴)
8 cntop1 12410 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
98adantr 274 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
109adantr 274 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐽 ∈ Top)
111topopn 12215 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
12 ssexg 4075 . . . . . . . . 9 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
1312ancoms 266 . . . . . . . 8 ((𝑋𝐽𝐴𝑋) → 𝐴 ∈ V)
1411, 13sylan 281 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ V)
158, 14sylan 281 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1615adantr 274 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → 𝐴 ∈ V)
17 cnima 12429 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
1817adantlr 469 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → (𝐹𝑜) ∈ 𝐽)
19 elrestr 12168 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ (𝐹𝑜) ∈ 𝐽) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
2010, 16, 18, 19syl3anc 1217 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝑜) ∩ 𝐴) ∈ (𝐽t 𝐴))
217, 20eqeltrid 2227 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑜𝐾) → ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
2221ralrimiva 2508 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))
231toptopon 12225 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
248, 23sylib 121 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
25 resttopon 12380 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2624, 25sylan 281 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
27 cntop2 12411 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 274 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 12225 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 121 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscn 12406 . . 3 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
3226, 30, 31syl2anc 409 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ ((𝐹𝐴):𝐴 𝐾 ∧ ∀𝑜𝐾 ((𝐹𝐴) “ 𝑜) ∈ (𝐽t 𝐴))))
336, 22, 32mpbir2and 929 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417  Vcvv 2689   ∩ cin 3075   ⊆ wss 3076  ∪ cuni 3744  ◡ccnv 4546   ↾ cres 4549   “ cima 4550  ⟶wf 5127  ‘cfv 5131  (class class class)co 5782   ↾t crest 12160  Topctop 12204  TopOnctopon 12217   Cn ccn 12394 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-rest 12162  df-topgen 12181  df-top 12205  df-topon 12218  df-bases 12250  df-cn 12397 This theorem is referenced by:  cnmpt1res  12505  cnmpt2res  12506  hmeores  12524
 Copyright terms: Public domain W3C validator