| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > toponmax | GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | toponuni 14251 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 14250 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2196 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 14244 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) | 
| 5 | 2, 4 | syl 14 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) | 
| 6 | 1, 5 | eqeltrd 2273 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∪ cuni 3839 ‘cfv 5258 Topctop 14233 TopOnctopon 14246 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-top 14234 df-topon 14247 | 
| This theorem is referenced by: topgele 14265 eltpsg 14276 resttopon 14407 lmfval 14428 cnfval 14430 cnpfval 14431 iscn 14433 cnpval 14434 iscnp 14435 lmbrf 14451 cnconst2 14469 cnrest2 14472 cndis 14477 cnpdis 14478 lmfss 14480 lmres 14484 lmff 14485 tx1cn 14505 tx2cn 14506 txlm 14515 cnmpt2res 14533 mopnm 14684 isxms2 14688 | 
| Copyright terms: Public domain | W3C validator |