Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > toponmax | GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 12653 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
2 | topontop 12652 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | eqid 2165 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn 12646 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 2, 4 | syl 14 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
6 | 1, 5 | eqeltrd 2243 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∪ cuni 3789 ‘cfv 5188 Topctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-top 12636 df-topon 12649 |
This theorem is referenced by: topgele 12667 eltpsg 12678 resttopon 12811 lmfval 12832 cnfval 12834 cnpfval 12835 iscn 12837 cnpval 12838 iscnp 12839 lmbrf 12855 cnconst2 12873 cnrest2 12876 cndis 12881 cnpdis 12882 lmfss 12884 lmres 12888 lmff 12889 tx1cn 12909 tx2cn 12910 txlm 12919 cnmpt2res 12937 mopnm 13088 isxms2 13092 |
Copyright terms: Public domain | W3C validator |