Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isnei | GIF version |
Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isnei | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | neival 12937 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) |
3 | 2 | eleq2d 2240 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) |
4 | sseq2 3171 | . . . . . . 7 ⊢ (𝑣 = 𝑁 → (𝑔 ⊆ 𝑣 ↔ 𝑔 ⊆ 𝑁)) | |
5 | 4 | anbi2d 461 | . . . . . 6 ⊢ (𝑣 = 𝑁 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣) ↔ (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
6 | 5 | rexbidv 2471 | . . . . 5 ⊢ (𝑣 = 𝑁 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣) ↔ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
7 | 6 | elrab 2886 | . . . 4 ⊢ (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 1 | topopn 12800 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | elpw2g 4142 | . . . . . 6 ⊢ (𝑋 ∈ 𝐽 → (𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 ⊆ 𝑋)) | |
10 | 8, 9 | syl 14 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 ⊆ 𝑋)) |
11 | 10 | anbi1d 462 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 7, 11 | syl5bb 191 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)} ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | 12 | adantr 274 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)} ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
14 | 3, 13 | bitrd 187 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 {crab 2452 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 ‘cfv 5198 Topctop 12789 neicnei 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-nei 12933 |
This theorem is referenced by: neiint 12939 isneip 12940 neii1 12941 neii2 12943 neiss 12944 neipsm 12948 opnneissb 12949 opnssneib 12950 ssnei2 12951 innei 12957 neitx 13062 |
Copyright terms: Public domain | W3C validator |