| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnei | GIF version | ||
| Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isnei | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | neival 14825 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) |
| 3 | 2 | eleq2d 2299 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) |
| 4 | sseq2 3248 | . . . . . . 7 ⊢ (𝑣 = 𝑁 → (𝑔 ⊆ 𝑣 ↔ 𝑔 ⊆ 𝑁)) | |
| 5 | 4 | anbi2d 464 | . . . . . 6 ⊢ (𝑣 = 𝑁 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣) ↔ (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
| 6 | 5 | rexbidv 2531 | . . . . 5 ⊢ (𝑣 = 𝑁 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣) ↔ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
| 7 | 6 | elrab 2959 | . . . 4 ⊢ (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
| 8 | 1 | topopn 14690 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 9 | elpw2g 4240 | . . . . . 6 ⊢ (𝑋 ∈ 𝐽 → (𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 ⊆ 𝑋)) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 ⊆ 𝑋)) |
| 11 | 10 | anbi1d 465 | . . . 4 ⊢ (𝐽 ∈ Top → ((𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 12 | 7, 11 | bitrid 192 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)} ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 13 | 12 | adantr 276 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)} ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 14 | 3, 13 | bitrd 188 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 {crab 2512 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3888 ‘cfv 5318 Topctop 14679 neicnei 14820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-top 14680 df-nei 14821 |
| This theorem is referenced by: neiint 14827 isneip 14828 neii1 14829 neii2 14831 neiss 14832 neipsm 14836 opnneissb 14837 opnssneib 14838 ssnei2 14839 innei 14845 neitx 14950 |
| Copyright terms: Public domain | W3C validator |