ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnei GIF version

Theorem isnei 12095
Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isnei ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔   𝑔,𝑋

Proof of Theorem isnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = 𝐽
21neival 12094 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
32eleq2d 2169 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)}))
4 sseq2 3071 . . . . . . 7 (𝑣 = 𝑁 → (𝑔𝑣𝑔𝑁))
54anbi2d 455 . . . . . 6 (𝑣 = 𝑁 → ((𝑆𝑔𝑔𝑣) ↔ (𝑆𝑔𝑔𝑁)))
65rexbidv 2397 . . . . 5 (𝑣 = 𝑁 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑣) ↔ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
76elrab 2793 . . . 4 (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
81topopn 11957 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 4021 . . . . . 6 (𝑋𝐽 → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
108, 9syl 14 . . . . 5 (𝐽 ∈ Top → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
1110anbi1d 456 . . . 4 (𝐽 ∈ Top → ((𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
127, 11syl5bb 191 . . 3 (𝐽 ∈ Top → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1312adantr 272 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
143, 13bitrd 187 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wrex 2376  {crab 2379  wss 3021  𝒫 cpw 3457   cuni 3683  cfv 5059  Topctop 11946  neicnei 12089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-top 11947  df-nei 12090
This theorem is referenced by:  neiint  12096  isneip  12097  neii1  12098  neii2  12100  neiss  12101  neipsm  12105  opnneissb  12106  opnssneib  12107  ssnei2  12108  innei  12114  neitx  12218
  Copyright terms: Public domain W3C validator