ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnei GIF version

Theorem isnei 14312
Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isnei ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔   𝑔,𝑋

Proof of Theorem isnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = 𝐽
21neival 14311 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
32eleq2d 2263 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)}))
4 sseq2 3203 . . . . . . 7 (𝑣 = 𝑁 → (𝑔𝑣𝑔𝑁))
54anbi2d 464 . . . . . 6 (𝑣 = 𝑁 → ((𝑆𝑔𝑔𝑣) ↔ (𝑆𝑔𝑔𝑁)))
65rexbidv 2495 . . . . 5 (𝑣 = 𝑁 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑣) ↔ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
76elrab 2916 . . . 4 (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
81topopn 14176 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 4185 . . . . . 6 (𝑋𝐽 → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
108, 9syl 14 . . . . 5 (𝐽 ∈ Top → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
1110anbi1d 465 . . . 4 (𝐽 ∈ Top → ((𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
127, 11bitrid 192 . . 3 (𝐽 ∈ Top → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1312adantr 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
143, 13bitrd 188 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  {crab 2476  wss 3153  𝒫 cpw 3601   cuni 3835  cfv 5254  Topctop 14165  neicnei 14306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-top 14166  df-nei 14307
This theorem is referenced by:  neiint  14313  isneip  14314  neii1  14315  neii2  14317  neiss  14318  neipsm  14322  opnneissb  14323  opnssneib  14324  ssnei2  14325  innei  14331  neitx  14436
  Copyright terms: Public domain W3C validator