| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringbas | GIF version | ||
| Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringbas | ⊢ ℤ = (Base‘ℤring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zring 14540 | . . . 4 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℤring = (ℂfld ↾s ℤ)) |
| 3 | cnfldbas 14509 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 5 | cnfldex 14508 | . . . 4 ⊢ ℂfld ∈ V | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ V) |
| 7 | zsscn 9442 | . . . 4 ⊢ ℤ ⊆ ℂ | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → ℤ ⊆ ℂ) |
| 9 | 2, 4, 6, 8 | ressbas2d 13087 | . 2 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
| 10 | 9 | mptru 1404 | 1 ⊢ ℤ = (Base‘ℤring) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 ℤcz 9434 Basecbs 13018 ↾s cress 13019 ℂfldccnfld 14505 ℤringczring 14539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-rp 9838 df-fz 10193 df-cj 11339 df-abs 11496 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-starv 13111 df-tset 13115 df-ple 13116 df-ds 13118 df-unif 13119 df-topgen 13279 df-bl 14495 df-mopn 14496 df-fg 14498 df-metu 14499 df-cnfld 14506 df-zring 14540 |
| This theorem is referenced by: dvdsrzring 14552 zringinvg 14553 expghmap 14556 mulgghm2 14557 mulgrhm 14558 mulgrhm2 14559 znlidl 14583 znbas 14593 znzrh2 14595 znzrhfo 14597 zndvds 14598 znf1o 14600 znidom 14606 znidomb 14607 znunit 14608 znrrg 14609 lgseisenlem3 15736 lgseisenlem4 15737 |
| Copyright terms: Public domain | W3C validator |