![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zringbas | GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-zring 13915 | . . . 4 ⊢ ℤring = (ℂfld ↾s ℤ) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℤring = (ℂfld ↾s ℤ)) |
3 | cnfldbas 13893 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
5 | cnfldex 13892 | . . . 4 ⊢ ℂfld ∈ V | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ V) |
7 | zsscn 9296 | . . . 4 ⊢ ℤ ⊆ ℂ | |
8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → ℤ ⊆ ℂ) |
9 | 2, 4, 6, 8 | ressbas2d 12591 | . 2 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
10 | 9 | mptru 1373 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊤wtru 1365 ∈ wcel 2160 Vcvv 2752 ⊆ wss 3144 ‘cfv 5238 (class class class)co 5900 ℂcc 7844 ℤcz 9288 Basecbs 12523 ↾s cress 12524 ℂfldccnfld 13889 ℤringczring 13914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-addf 7968 ax-mulf 7969 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-tp 3618 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-9 9020 df-n0 9212 df-z 9289 df-dec 9420 df-uz 9564 df-fz 10045 df-cj 10892 df-struct 12525 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-plusg 12613 df-mulr 12614 df-starv 12615 df-icnfld 13890 df-zring 13915 |
This theorem is referenced by: dvdsrzring 13927 zringinvg 13928 mulgghm2 13931 mulgrhm 13932 mulgrhm2 13933 znlidl 13955 znbas 13964 |
Copyright terms: Public domain | W3C validator |