| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringbas | GIF version | ||
| Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringbas | ⊢ ℤ = (Base‘ℤring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zring 14563 | . . . 4 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℤring = (ℂfld ↾s ℤ)) |
| 3 | cnfldbas 14532 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 5 | cnfldex 14531 | . . . 4 ⊢ ℂfld ∈ V | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ V) |
| 7 | zsscn 9462 | . . . 4 ⊢ ℤ ⊆ ℂ | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → ℤ ⊆ ℂ) |
| 9 | 2, 4, 6, 8 | ressbas2d 13109 | . 2 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
| 10 | 9 | mptru 1404 | 1 ⊢ ℤ = (Base‘ℤring) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 ℤcz 9454 Basecbs 13040 ↾s cress 13041 ℂfldccnfld 14528 ℤringczring 14562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-topgen 13301 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 |
| This theorem is referenced by: dvdsrzring 14575 zringinvg 14576 expghmap 14579 mulgghm2 14580 mulgrhm 14581 mulgrhm2 14582 znlidl 14606 znbas 14616 znzrh2 14618 znzrhfo 14620 zndvds 14621 znf1o 14623 znidom 14629 znidomb 14630 znunit 14631 znrrg 14632 lgseisenlem3 15759 lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |