| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringbas | GIF version | ||
| Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringbas | ⊢ ℤ = (Base‘ℤring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-zring 14225 | . . . 4 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℤring = (ℂfld ↾s ℤ)) |
| 3 | cnfldbas 14194 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 5 | cnfldex 14193 | . . . 4 ⊢ ℂfld ∈ V | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ V) |
| 7 | zsscn 9353 | . . . 4 ⊢ ℤ ⊆ ℂ | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (⊤ → ℤ ⊆ ℂ) |
| 9 | 2, 4, 6, 8 | ressbas2d 12773 | . 2 ⊢ (⊤ → ℤ = (Base‘ℤring)) |
| 10 | 9 | mptru 1373 | 1 ⊢ ℤ = (Base‘ℤring) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5925 ℂcc 7896 ℤcz 9345 Basecbs 12705 ↾s cress 12706 ℂfldccnfld 14190 ℤringczring 14224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-dec 9477 df-uz 9621 df-rp 9748 df-fz 10103 df-cj 11026 df-abs 11183 df-struct 12707 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-starv 12797 df-tset 12801 df-ple 12802 df-ds 12804 df-unif 12805 df-topgen 12964 df-bl 14180 df-mopn 14181 df-fg 14183 df-metu 14184 df-cnfld 14191 df-zring 14225 |
| This theorem is referenced by: dvdsrzring 14237 zringinvg 14238 expghmap 14241 mulgghm2 14242 mulgrhm 14243 mulgrhm2 14244 znlidl 14268 znbas 14278 znzrh2 14280 znzrhfo 14282 zndvds 14283 znf1o 14285 znidom 14291 znidomb 14292 znunit 14293 znrrg 14294 lgseisenlem3 15421 lgseisenlem4 15422 |
| Copyright terms: Public domain | W3C validator |