![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zex | GIF version |
Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7996 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 9325 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 4167 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ℂcc 7870 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 |
This theorem is referenced by: dfuzi 9427 uzval 9594 uzf 9595 fzval 10076 fzf 10078 flval 10341 frec2uzrand 10476 frec2uzf1od 10477 frecfzennn 10497 uzennn 10507 hashinfom 10849 climz 11435 serclim0 11448 climaddc1 11472 climmulc2 11474 climsubc1 11475 climsubc2 11476 climle 11477 climlec2 11484 iserabs 11618 isumshft 11633 explecnv 11648 prodfclim1 11687 qnumval 12323 qdenval 12324 odzval 12379 znnen 12555 exmidunben 12583 qnnen 12588 fngsum 12971 igsumvalx 12972 mulgfvalg 13191 mulgex 13193 zringplusg 14085 zringmulr 14087 zringmpg 14094 zrhval2 14107 lmres 14416 climcncf 14739 |
Copyright terms: Public domain | W3C validator |