| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8048 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9379 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4181 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ℂcc 7922 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 |
| This theorem is referenced by: dfuzi 9482 uzval 9649 uzf 9650 fzval 10131 fzf 10133 flval 10413 frec2uzrand 10548 frec2uzf1od 10549 frecfzennn 10569 uzennn 10579 hashinfom 10921 climz 11574 serclim0 11587 climaddc1 11611 climmulc2 11613 climsubc1 11614 climsubc2 11615 climle 11616 climlec2 11623 iserabs 11757 isumshft 11772 explecnv 11787 prodfclim1 11826 qnumval 12478 qdenval 12479 odzval 12535 znnen 12740 exmidunben 12768 qnnen 12773 fngsum 13191 igsumvalx 13192 mulgfvalg 13428 mulgex 13430 zringplusg 14330 zringmulr 14332 zringmpg 14339 zrhval2 14352 lmres 14691 climcncf 15027 |
| Copyright terms: Public domain | W3C validator |