| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8031 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9362 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4181 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ℂcc 7905 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-neg 8228 df-z 9355 |
| This theorem is referenced by: dfuzi 9465 uzval 9632 uzf 9633 fzval 10114 fzf 10116 flval 10396 frec2uzrand 10531 frec2uzf1od 10532 frecfzennn 10552 uzennn 10562 hashinfom 10904 climz 11522 serclim0 11535 climaddc1 11559 climmulc2 11561 climsubc1 11562 climsubc2 11563 climle 11564 climlec2 11571 iserabs 11705 isumshft 11720 explecnv 11735 prodfclim1 11774 qnumval 12426 qdenval 12427 odzval 12483 znnen 12688 exmidunben 12716 qnnen 12721 fngsum 13138 igsumvalx 13139 mulgfvalg 13375 mulgex 13377 zringplusg 14277 zringmulr 14279 zringmpg 14286 zrhval2 14299 lmres 14638 climcncf 14974 |
| Copyright terms: Public domain | W3C validator |