| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8119 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9450 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4221 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ℂcc 7993 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 |
| This theorem is referenced by: dfuzi 9553 uzval 9720 uzf 9721 fzval 10202 fzf 10204 flval 10487 frec2uzrand 10622 frec2uzf1od 10623 frecfzennn 10643 uzennn 10653 hashinfom 10995 climz 11798 serclim0 11811 climaddc1 11835 climmulc2 11837 climsubc1 11838 climsubc2 11839 climle 11840 climlec2 11847 iserabs 11981 isumshft 11996 explecnv 12011 prodfclim1 12050 qnumval 12702 qdenval 12703 odzval 12759 znnen 12964 exmidunben 12992 qnnen 12997 fngsum 13416 igsumvalx 13417 mulgfvalg 13653 mulgex 13655 zringplusg 14555 zringmulr 14557 zringmpg 14564 zrhval2 14577 lmres 14916 climcncf 15252 |
| Copyright terms: Public domain | W3C validator |