| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8020 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9351 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4172 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7894 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 |
| This theorem is referenced by: dfuzi 9453 uzval 9620 uzf 9621 fzval 10102 fzf 10104 flval 10379 frec2uzrand 10514 frec2uzf1od 10515 frecfzennn 10535 uzennn 10545 hashinfom 10887 climz 11474 serclim0 11487 climaddc1 11511 climmulc2 11513 climsubc1 11514 climsubc2 11515 climle 11516 climlec2 11523 iserabs 11657 isumshft 11672 explecnv 11687 prodfclim1 11726 qnumval 12378 qdenval 12379 odzval 12435 znnen 12640 exmidunben 12668 qnnen 12673 fngsum 13090 igsumvalx 13091 mulgfvalg 13327 mulgex 13329 zringplusg 14229 zringmulr 14231 zringmpg 14238 zrhval2 14251 lmres 14568 climcncf 14904 |
| Copyright terms: Public domain | W3C validator |