Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zex | GIF version |
Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7898 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 9220 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 4127 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ℂcc 7772 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 |
This theorem is referenced by: dfuzi 9322 uzval 9489 uzf 9490 fzval 9967 fzf 9969 flval 10228 frec2uzrand 10361 frec2uzf1od 10362 frecfzennn 10382 uzennn 10392 hashinfom 10712 climz 11255 serclim0 11268 climaddc1 11292 climmulc2 11294 climsubc1 11295 climsubc2 11296 climle 11297 climlec2 11304 iserabs 11438 isumshft 11453 explecnv 11468 prodfclim1 11507 qnumval 12139 qdenval 12140 odzval 12195 znnen 12353 exmidunben 12381 qnnen 12386 lmres 13042 climcncf 13365 |
Copyright terms: Public domain | W3C validator |