| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8069 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9400 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4190 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ℂcc 7943 ℤcz 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-neg 8266 df-z 9393 |
| This theorem is referenced by: dfuzi 9503 uzval 9670 uzf 9671 fzval 10152 fzf 10154 flval 10437 frec2uzrand 10572 frec2uzf1od 10573 frecfzennn 10593 uzennn 10603 hashinfom 10945 climz 11678 serclim0 11691 climaddc1 11715 climmulc2 11717 climsubc1 11718 climsubc2 11719 climle 11720 climlec2 11727 iserabs 11861 isumshft 11876 explecnv 11891 prodfclim1 11930 qnumval 12582 qdenval 12583 odzval 12639 znnen 12844 exmidunben 12872 qnnen 12877 fngsum 13295 igsumvalx 13296 mulgfvalg 13532 mulgex 13534 zringplusg 14434 zringmulr 14436 zringmpg 14443 zrhval2 14456 lmres 14795 climcncf 15131 |
| Copyright terms: Public domain | W3C validator |