Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zex | GIF version |
Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7891 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 9213 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 4125 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ℂcc 7765 ℤcz 9205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7858 ax-resscn 7859 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5854 df-neg 8086 df-z 9206 |
This theorem is referenced by: dfuzi 9315 uzval 9482 uzf 9483 fzval 9960 fzf 9962 flval 10221 frec2uzrand 10354 frec2uzf1od 10355 frecfzennn 10375 uzennn 10385 hashinfom 10705 climz 11248 serclim0 11261 climaddc1 11285 climmulc2 11287 climsubc1 11288 climsubc2 11289 climle 11290 climlec2 11297 iserabs 11431 isumshft 11446 explecnv 11461 prodfclim1 11500 qnumval 12132 qdenval 12133 odzval 12188 znnen 12346 exmidunben 12374 qnnen 12379 lmres 13007 climcncf 13330 |
Copyright terms: Public domain | W3C validator |