| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8003 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9334 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4171 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7877 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 |
| This theorem is referenced by: dfuzi 9436 uzval 9603 uzf 9604 fzval 10085 fzf 10087 flval 10362 frec2uzrand 10497 frec2uzf1od 10498 frecfzennn 10518 uzennn 10528 hashinfom 10870 climz 11457 serclim0 11470 climaddc1 11494 climmulc2 11496 climsubc1 11497 climsubc2 11498 climle 11499 climlec2 11506 iserabs 11640 isumshft 11655 explecnv 11670 prodfclim1 11709 qnumval 12353 qdenval 12354 odzval 12410 znnen 12615 exmidunben 12643 qnnen 12648 fngsum 13031 igsumvalx 13032 mulgfvalg 13251 mulgex 13253 zringplusg 14153 zringmulr 14155 zringmpg 14162 zrhval2 14175 lmres 14484 climcncf 14820 |
| Copyright terms: Public domain | W3C validator |