| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zex | GIF version | ||
| Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| zex | ⊢ ℤ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8022 | . 2 ⊢ ℂ ∈ V | |
| 2 | zsscn 9353 | . 2 ⊢ ℤ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4172 | 1 ⊢ ℤ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7896 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 |
| This theorem is referenced by: dfuzi 9455 uzval 9622 uzf 9623 fzval 10104 fzf 10106 flval 10381 frec2uzrand 10516 frec2uzf1od 10517 frecfzennn 10537 uzennn 10547 hashinfom 10889 climz 11476 serclim0 11489 climaddc1 11513 climmulc2 11515 climsubc1 11516 climsubc2 11517 climle 11518 climlec2 11525 iserabs 11659 isumshft 11674 explecnv 11689 prodfclim1 11728 qnumval 12380 qdenval 12381 odzval 12437 znnen 12642 exmidunben 12670 qnnen 12675 fngsum 13092 igsumvalx 13093 mulgfvalg 13329 mulgex 13331 zringplusg 14231 zringmulr 14233 zringmpg 14240 zrhval2 14253 lmres 14592 climcncf 14928 |
| Copyright terms: Public domain | W3C validator |