Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zex | GIF version |
Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7873 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 9195 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 4119 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2725 ℂcc 7747 ℤcz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 |
This theorem is referenced by: dfuzi 9297 uzval 9464 uzf 9465 fzval 9942 fzf 9944 flval 10203 frec2uzrand 10336 frec2uzf1od 10337 frecfzennn 10357 uzennn 10367 hashinfom 10687 climz 11229 serclim0 11242 climaddc1 11266 climmulc2 11268 climsubc1 11269 climsubc2 11270 climle 11271 climlec2 11278 iserabs 11412 isumshft 11427 explecnv 11442 prodfclim1 11481 qnumval 12113 qdenval 12114 odzval 12169 znnen 12327 exmidunben 12355 qnnen 12360 lmres 12848 climcncf 13171 |
Copyright terms: Public domain | W3C validator |