MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4on Structured version   Visualization version   GIF version

Theorem 4on 8506
Description: Ordinal 4 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
4on 4o ∈ On

Proof of Theorem 4on
StepHypRef Expression
1 df-4o 8490 . 2 4o = suc 3o
2 3on 8505 . . 3 3o ∈ On
32onsuci 7843 . 2 suc 3o ∈ On
41, 3eqeltri 2821 1 4o ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Oncon0 6371  suc csuc 6373  3oc3o 8482  4oc4o 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-on 6375  df-suc 6377  df-1o 8487  df-2o 8488  df-3o 8489  df-4o 8490
This theorem is referenced by:  4no  43011
  Copyright terms: Public domain W3C validator