| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7691. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8411 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6375 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8421 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2825 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7765 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∅c0 4292 Oncon0 6320 suc csuc 6322 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: 2on 8424 nlim2 8431 ord1eln01 8437 ondif2 8443 2oconcl 8444 fnoe 8451 oesuclem 8466 oecl 8478 o1p1e2 8481 om1r 8484 oe1m 8486 omword1 8514 omword2 8515 omlimcl 8519 oneo 8522 oewordi 8532 oelim2 8536 oeoa 8538 oeoe 8540 oeeui 8543 1onn 8581 oaabs2 8590 enpr2dOLD 8998 sucxpdom 9178 en2 9202 oancom 9580 cnfcom3lem 9632 ssttrcl 9644 ttrcltr 9645 dmttrcl 9650 ttrclselem2 9655 pm54.43lem 9929 pm54.43 9930 infxpenc 9947 infxpenc2 9951 undjudom 10097 endjudisj 10098 djuen 10099 dju1p1e2 10103 dju1p1e2ALT 10104 xpdjuen 10109 mapdjuen 10110 djuxpdom 10115 djufi 10116 djuinf 10118 infdju1 10119 pwdju1 10120 pwdjudom 10144 isfin4p1 10244 pwxpndom2 10594 wunex2 10667 wuncval2 10676 tsk2 10694 efgmnvl 19620 frgpnabllem1 19779 dmdprdpr 19957 dprdpr 19958 psr1crng 22047 psr1assa 22048 psr1tos 22049 psr1bas 22051 vr1cl2 22053 ply1lss 22057 ply1subrg 22058 ply1ass23l 22087 ressply1bas2 22088 ressply1add 22090 ressply1mul 22091 ressply1vsca 22092 subrgply1 22093 ply1plusgfvi 22102 psr1ring 22107 psr1lmod 22109 psr1sca 22110 ply1ascl 22120 subrg1ascl 22121 subrg1asclcl 22122 subrgvr1 22123 subrgvr1cl 22124 coe1z 22125 coe1mul2lem1 22129 coe1mul2 22131 coe1tm 22135 evls1val 22183 evls1rhm 22185 evls1sca 22186 evl1val 22192 evl1rhm 22195 evl1sca 22197 evl1var 22199 evls1var 22201 mpfpf1 22214 pf1mpf 22215 pf1ind 22218 xkofvcn 23547 xpstopnlem1 23672 ufildom1 23789 deg1z 25968 deg1addle 25982 deg1vscale 25985 deg1vsca 25986 deg1mulle2 25990 deg1le0 25992 ply1nzb 26004 sltval2 27544 noextendlt 27557 sltsolem1 27563 nosepnelem 27567 nolt02o 27583 old1 27763 rankeq1o 36132 ssoninhaus 36409 onint1 36410 1oequni2o 37329 finxp1o 37353 finxpreclem3 37354 finxpreclem4 37355 finxpreclem5 37356 finxpsuclem 37358 pw2f1ocnv 42999 wepwsolem 43004 pwfi2f1o 43058 oaabsb 43256 oaordnr 43258 omnord1 43267 oege1 43268 oaomoencom 43279 omabs2 43294 omcl3g 43296 nadd1suc 43354 om2 43366 oe2 43368 safesnsupfiss 43377 safesnsupfidom1o 43379 safesnsupfilb 43380 1no 43398 nlim2NEW 43405 oa1cl 43409 sn1dom 43488 pr2dom 43489 tr3dom 43490 clsk1indlem4 44006 |
| Copyright terms: Public domain | W3C validator |