Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7642. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8359 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6349 | . . 3 ⊢ ∅ ∈ On | |
3 | 1oex 8369 | . . . 4 ⊢ 1o ∈ V | |
4 | 1, 3 | eqeltrri 2834 | . . 3 ⊢ suc ∅ ∈ V |
5 | sucexeloni 7714 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
6 | 2, 4, 5 | mp2an 689 | . 2 ⊢ suc ∅ ∈ On |
7 | 1, 6 | eqeltri 2833 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ∅c0 4268 Oncon0 6296 suc csuc 6298 1oc1o 8352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-ord 6299 df-on 6300 df-suc 6302 df-1o 8359 |
This theorem is referenced by: 2on 8373 2onOLD 8374 1oexOLD 8379 nlim2 8383 ord1eln01 8389 ondif2 8395 2oconcl 8396 fnoe 8403 oesuclem 8418 oecl 8430 o1p1e2 8433 o2p2e4OLD 8435 om1r 8437 oe1m 8439 omword1 8467 omword2 8468 omlimcl 8472 oneo 8475 oewordi 8485 oelim2 8489 oeoa 8491 oeoe 8493 oeeui 8496 1onn 8533 oaabs2 8542 enpr2dOLD 8907 sucxpdom 9112 en2 9138 oancom 9500 cnfcom3lem 9552 ssttrcl 9564 ttrcltr 9565 dmttrcl 9570 ttrclselem2 9575 pm54.43lem 9849 pm54.43 9850 infxpenc 9867 infxpenc2 9871 undjudom 10016 endjudisj 10017 djuen 10018 dju1p1e2 10022 dju1p1e2ALT 10023 xpdjuen 10028 mapdjuen 10029 djuxpdom 10034 djufi 10035 djuinf 10037 infdju1 10038 pwdju1 10039 pwdjudom 10065 isfin4p1 10164 pwxpndom2 10514 wunex2 10587 wuncval2 10596 tsk2 10614 efgmnvl 19407 frgpnabllem1 19561 dmdprdpr 19739 dprdpr 19740 psr1crng 21456 psr1assa 21457 psr1tos 21458 psr1bas 21460 vr1cl2 21462 ply1lss 21465 ply1subrg 21466 ressply1bas2 21497 ressply1add 21499 ressply1mul 21500 ressply1vsca 21501 subrgply1 21502 ply1plusgfvi 21511 psr1ring 21516 psr1lmod 21518 psr1sca 21519 ply1ascl 21527 subrg1ascl 21528 subrg1asclcl 21529 subrgvr1 21530 subrgvr1cl 21531 coe1z 21532 coe1mul2lem1 21536 coe1mul2 21538 coe1tm 21542 evls1val 21584 evls1rhm 21586 evls1sca 21587 evl1val 21593 evl1rhm 21596 evl1sca 21598 evl1var 21600 evls1var 21602 mpfpf1 21615 pf1mpf 21616 pf1ind 21619 xkofvcn 22933 xpstopnlem1 23058 ufildom1 23175 deg1z 25350 deg1addle 25364 deg1vscale 25367 deg1vsca 25368 deg1mulle2 25372 deg1le0 25374 ply1nzb 25385 sltval2 26902 noextendlt 26915 sltsolem1 26921 nosepnelem 26925 nolt02o 26941 rankeq1o 34564 ssoninhaus 34728 onint1 34729 1oequni2o 35637 finxp1o 35661 finxpreclem3 35662 finxpreclem4 35663 finxpreclem5 35664 finxpsuclem 35666 pw2f1ocnv 41110 wepwsolem 41118 pwfi2f1o 41172 omabs2 41305 omcl3g 41307 safesnsupfiss 41332 safesnsupfidom1o 41334 safesnsupfilb 41335 1no 41353 nlim2NEW 41360 oa1cl 41364 sn1dom 41443 pr2dom 41444 tr3dom 41445 clsk1indlem4 41964 ply1ass23l 46063 |
Copyright terms: Public domain | W3C validator |