Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8267 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6304 | . . 3 ⊢ ∅ ∈ On | |
3 | 2 | onsuci 7660 | . 2 ⊢ suc ∅ ∈ On |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4253 Oncon0 6251 suc csuc 6253 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 df-1o 8267 |
This theorem is referenced by: 2on 8275 1oexOLD 8281 ondif2 8294 2oconcl 8295 fnoe 8302 oesuclem 8317 oecl 8329 o1p1e2 8332 o2p2e4OLD 8334 om1r 8336 oe1m 8338 omword1 8366 omword2 8367 omlimcl 8371 oneo 8374 oewordi 8384 oelim2 8388 oeoa 8390 oeoe 8392 oeeui 8395 oaabs2 8439 enpr2d 8792 sucxpdom 8961 oancom 9339 cnfcom3lem 9391 pm54.43lem 9689 pm54.43 9690 infxpenc 9705 infxpenc2 9709 undjudom 9854 endjudisj 9855 djuen 9856 dju1p1e2 9860 dju1p1e2ALT 9861 xpdjuen 9866 mapdjuen 9867 djuxpdom 9872 djufi 9873 djuinf 9875 infdju1 9876 pwdju1 9877 pwdjudom 9903 isfin4p1 10002 pwxpndom2 10352 wunex2 10425 wuncval2 10434 tsk2 10452 efgmnvl 19235 frgpnabllem1 19389 dmdprdpr 19567 dprdpr 19568 psr1crng 21268 psr1assa 21269 psr1tos 21270 psr1bas 21272 vr1cl2 21274 ply1lss 21277 ply1subrg 21278 ressply1bas2 21309 ressply1add 21311 ressply1mul 21312 ressply1vsca 21313 subrgply1 21314 ply1plusgfvi 21323 psr1ring 21328 psr1lmod 21330 psr1sca 21331 ply1ascl 21339 subrg1ascl 21340 subrg1asclcl 21341 subrgvr1 21342 subrgvr1cl 21343 coe1z 21344 coe1mul2lem1 21348 coe1mul2 21350 coe1tm 21354 evls1val 21396 evls1rhm 21398 evls1sca 21399 evl1val 21405 evl1rhm 21408 evl1sca 21410 evl1var 21412 evls1var 21414 mpfpf1 21427 pf1mpf 21428 pf1ind 21431 xkofvcn 22743 xpstopnlem1 22868 ufildom1 22985 deg1z 25157 deg1addle 25171 deg1vscale 25174 deg1vsca 25175 deg1mulle2 25179 deg1le0 25181 ply1nzb 25192 ssttrcl 33701 ttrcltr 33702 dmttrcl 33707 ttrclselem2 33712 sltval2 33786 noextendlt 33799 sltsolem1 33805 nosepnelem 33809 nolt02o 33825 rankeq1o 34400 ssoninhaus 34564 onint1 34565 1oequni2o 35466 finxp1o 35490 finxpreclem3 35491 finxpreclem4 35492 finxpreclem5 35493 finxpsuclem 35495 pw2f1ocnv 40775 wepwsolem 40783 pwfi2f1o 40837 sn1dom 41031 pr2dom 41032 tr3dom 41033 clsk1indlem4 41543 ply1ass23l 45611 |
Copyright terms: Public domain | W3C validator |