![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7770. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8522 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6449 | . . 3 ⊢ ∅ ∈ On | |
3 | 1oex 8532 | . . . 4 ⊢ 1o ∈ V | |
4 | 1, 3 | eqeltrri 2841 | . . 3 ⊢ suc ∅ ∈ V |
5 | sucexeloni 7845 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
6 | 2, 4, 5 | mp2an 691 | . 2 ⊢ suc ∅ ∈ On |
7 | 1, 6 | eqeltri 2840 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∅c0 4352 Oncon0 6395 suc csuc 6397 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-1o 8522 |
This theorem is referenced by: 2on 8536 2onOLD 8537 1oexOLD 8542 nlim2 8546 ord1eln01 8552 ondif2 8558 2oconcl 8559 fnoe 8566 oesuclem 8581 oecl 8593 o1p1e2 8596 om1r 8599 oe1m 8601 omword1 8629 omword2 8630 omlimcl 8634 oneo 8637 oewordi 8647 oelim2 8651 oeoa 8653 oeoe 8655 oeeui 8658 1onn 8696 oaabs2 8705 enpr2dOLD 9116 sucxpdom 9318 en2 9343 oancom 9720 cnfcom3lem 9772 ssttrcl 9784 ttrcltr 9785 dmttrcl 9790 ttrclselem2 9795 pm54.43lem 10069 pm54.43 10070 infxpenc 10087 infxpenc2 10091 undjudom 10237 endjudisj 10238 djuen 10239 dju1p1e2 10243 dju1p1e2ALT 10244 xpdjuen 10249 mapdjuen 10250 djuxpdom 10255 djufi 10256 djuinf 10258 infdju1 10259 pwdju1 10260 pwdjudom 10284 isfin4p1 10384 pwxpndom2 10734 wunex2 10807 wuncval2 10816 tsk2 10834 efgmnvl 19756 frgpnabllem1 19915 dmdprdpr 20093 dprdpr 20094 psr1crng 22209 psr1assa 22210 psr1tos 22211 psr1bas 22213 vr1cl2 22215 ply1lss 22219 ply1subrg 22220 ply1ass23l 22249 ressply1bas2 22250 ressply1add 22252 ressply1mul 22253 ressply1vsca 22254 subrgply1 22255 ply1plusgfvi 22264 psr1ring 22269 psr1lmod 22271 psr1sca 22272 ply1ascl 22282 subrg1ascl 22283 subrg1asclcl 22284 subrgvr1 22285 subrgvr1cl 22286 coe1z 22287 coe1mul2lem1 22291 coe1mul2 22293 coe1tm 22297 evls1val 22345 evls1rhm 22347 evls1sca 22348 evl1val 22354 evl1rhm 22357 evl1sca 22359 evl1var 22361 evls1var 22363 mpfpf1 22376 pf1mpf 22377 pf1ind 22380 xkofvcn 23713 xpstopnlem1 23838 ufildom1 23955 deg1z 26146 deg1addle 26160 deg1vscale 26163 deg1vsca 26164 deg1mulle2 26168 deg1le0 26170 ply1nzb 26182 sltval2 27719 noextendlt 27732 sltsolem1 27738 nosepnelem 27742 nolt02o 27758 old1 27932 rankeq1o 36135 ssoninhaus 36414 onint1 36415 1oequni2o 37334 finxp1o 37358 finxpreclem3 37359 finxpreclem4 37360 finxpreclem5 37361 finxpsuclem 37363 pw2f1ocnv 42994 wepwsolem 42999 pwfi2f1o 43053 oaabsb 43256 oaordnr 43258 omnord1 43267 oege1 43268 oaomoencom 43279 omabs2 43294 omcl3g 43296 nadd1suc 43354 om2 43366 oe2 43368 safesnsupfiss 43377 safesnsupfidom1o 43379 safesnsupfilb 43380 1no 43398 nlim2NEW 43405 oa1cl 43409 sn1dom 43488 pr2dom 43489 tr3dom 43490 clsk1indlem4 44006 |
Copyright terms: Public domain | W3C validator |