![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 7845 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6031 | . . 3 ⊢ ∅ ∈ On | |
3 | 2 | onsuci 7318 | . 2 ⊢ suc ∅ ∈ On |
4 | 1, 3 | eqeltri 2855 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ∅c0 4141 Oncon0 5978 suc csuc 5980 1oc1o 7838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-tr 4990 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-ord 5981 df-on 5982 df-suc 5984 df-1o 7845 |
This theorem is referenced by: 1oex 7853 2on 7854 ondif2 7868 2oconcl 7869 fnoe 7876 oesuclem 7891 oecl 7903 o1p1e2 7906 o2p2e4 7907 om1r 7909 oe1m 7911 omword1 7939 omword2 7940 omlimcl 7944 oneo 7947 oewordi 7957 oelim2 7961 oeoa 7963 oeoe 7965 oeeui 7968 oaabs2 8011 sucxpdom 8459 oancom 8847 cnfcom3lem 8899 pm54.43lem 9160 pm54.43 9161 infxpenc 9176 infxpenc2 9180 uncdadom 9330 cdaun 9331 cdaen 9332 cda1dif 9335 pm110.643 9336 pm110.643ALT 9337 cdacomen 9340 cdaassen 9341 xpcdaen 9342 mapcdaen 9343 cdaxpdom 9348 cdafi 9349 cdainf 9351 infcda1 9352 pwcda1 9353 pwcdadom 9375 isfin4-3 9474 pwxpndom2 9824 wunex2 9897 wuncval2 9906 tsk2 9924 xpscg 16608 xpscfn 16609 xpsc1 16611 efgmnvl 18515 frgpnabllem1 18666 dmdprdpr 18839 dprdpr 18840 psr1crng 19957 psr1assa 19958 psr1tos 19959 psr1bas 19961 vr1cl2 19963 ply1lss 19966 ply1subrg 19967 ressply1bas2 19998 ressply1add 20000 ressply1mul 20001 ressply1vsca 20002 subrgply1 20003 ply1plusgfvi 20012 psr1ring 20017 psr1lmod 20019 psr1sca 20020 ply1ascl 20028 subrg1ascl 20029 subrg1asclcl 20030 subrgvr1 20031 subrgvr1cl 20032 coe1z 20033 coe1mul2lem1 20037 coe1mul2 20039 coe1tm 20043 evls1val 20085 evls1rhm 20087 evls1sca 20088 evl1val 20093 evl1rhm 20096 evl1sca 20098 evl1var 20100 evls1var 20102 mpfpf1 20115 pf1mpf 20116 pf1ind 20119 xkofvcn 21900 xpstopnlem1 22025 ufildom1 22142 deg1z 24288 deg1addle 24302 deg1vscale 24305 deg1vsca 24306 deg1mulle2 24310 deg1le0 24312 ply1nzb 24323 sltval2 32402 noextendlt 32415 sltsolem1 32419 nosepnelem 32423 nolt02o 32438 rankeq1o 32871 ssoninhaus 33034 onint1 33035 1oequni2o 33814 finxp1o 33827 finxpreclem3 33828 finxpreclem4 33829 finxpreclem5 33830 finxpsuclem 33832 pw2f1ocnv 38573 wepwsolem 38581 pwfi2f1o 38635 clsk1indlem4 39308 ply1ass23l 43195 |
Copyright terms: Public domain | W3C validator |