![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7753. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8504 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6439 | . . 3 ⊢ ∅ ∈ On | |
3 | 1oex 8514 | . . . 4 ⊢ 1o ∈ V | |
4 | 1, 3 | eqeltrri 2835 | . . 3 ⊢ suc ∅ ∈ V |
5 | sucexeloni 7828 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
7 | 1, 6 | eqeltri 2834 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 ∅c0 4338 Oncon0 6385 suc csuc 6387 1oc1o 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 df-suc 6391 df-1o 8504 |
This theorem is referenced by: 2on 8518 2onOLD 8519 nlim2 8526 ord1eln01 8532 ondif2 8538 2oconcl 8539 fnoe 8546 oesuclem 8561 oecl 8573 o1p1e2 8576 om1r 8579 oe1m 8581 omword1 8609 omword2 8610 omlimcl 8614 oneo 8617 oewordi 8627 oelim2 8631 oeoa 8633 oeoe 8635 oeeui 8638 1onn 8676 oaabs2 8685 enpr2dOLD 9088 sucxpdom 9288 en2 9312 oancom 9688 cnfcom3lem 9740 ssttrcl 9752 ttrcltr 9753 dmttrcl 9758 ttrclselem2 9763 pm54.43lem 10037 pm54.43 10038 infxpenc 10055 infxpenc2 10059 undjudom 10205 endjudisj 10206 djuen 10207 dju1p1e2 10211 dju1p1e2ALT 10212 xpdjuen 10217 mapdjuen 10218 djuxpdom 10223 djufi 10224 djuinf 10226 infdju1 10227 pwdju1 10228 pwdjudom 10252 isfin4p1 10352 pwxpndom2 10702 wunex2 10775 wuncval2 10784 tsk2 10802 efgmnvl 19746 frgpnabllem1 19905 dmdprdpr 20083 dprdpr 20084 psr1crng 22203 psr1assa 22204 psr1tos 22205 psr1bas 22207 vr1cl2 22209 ply1lss 22213 ply1subrg 22214 ply1ass23l 22243 ressply1bas2 22244 ressply1add 22246 ressply1mul 22247 ressply1vsca 22248 subrgply1 22249 ply1plusgfvi 22258 psr1ring 22263 psr1lmod 22265 psr1sca 22266 ply1ascl 22276 subrg1ascl 22277 subrg1asclcl 22278 subrgvr1 22279 subrgvr1cl 22280 coe1z 22281 coe1mul2lem1 22285 coe1mul2 22287 coe1tm 22291 evls1val 22339 evls1rhm 22341 evls1sca 22342 evl1val 22348 evl1rhm 22351 evl1sca 22353 evl1var 22355 evls1var 22357 mpfpf1 22370 pf1mpf 22371 pf1ind 22374 xkofvcn 23707 xpstopnlem1 23832 ufildom1 23949 deg1z 26140 deg1addle 26154 deg1vscale 26157 deg1vsca 26158 deg1mulle2 26162 deg1le0 26164 ply1nzb 26176 sltval2 27715 noextendlt 27728 sltsolem1 27734 nosepnelem 27738 nolt02o 27754 old1 27928 rankeq1o 36152 ssoninhaus 36430 onint1 36431 1oequni2o 37350 finxp1o 37374 finxpreclem3 37375 finxpreclem4 37376 finxpreclem5 37377 finxpsuclem 37379 pw2f1ocnv 43025 wepwsolem 43030 pwfi2f1o 43084 oaabsb 43283 oaordnr 43285 omnord1 43294 oege1 43295 oaomoencom 43306 omabs2 43321 omcl3g 43323 nadd1suc 43381 om2 43393 oe2 43395 safesnsupfiss 43404 safesnsupfidom1o 43406 safesnsupfilb 43407 1no 43425 nlim2NEW 43432 oa1cl 43436 sn1dom 43515 pr2dom 43516 tr3dom 43517 clsk1indlem4 44033 |
Copyright terms: Public domain | W3C validator |