| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7675. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8395 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6366 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8405 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2825 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7749 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∅c0 4286 Oncon0 6311 suc csuc 6313 1oc1o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-suc 6317 df-1o 8395 |
| This theorem is referenced by: 2on 8408 nlim2 8415 ord1eln01 8421 ondif2 8427 2oconcl 8428 fnoe 8435 oesuclem 8450 oecl 8462 o1p1e2 8465 om1r 8468 oe1m 8470 omword1 8498 omword2 8499 omlimcl 8503 oneo 8506 oewordi 8516 oelim2 8520 oeoa 8522 oeoe 8524 oeeui 8527 1onn 8565 oaabs2 8574 sucxpdom 9160 en2 9184 oancom 9566 cnfcom3lem 9618 ssttrcl 9630 ttrcltr 9631 dmttrcl 9636 ttrclselem2 9641 pm54.43lem 9915 pm54.43 9916 infxpenc 9931 infxpenc2 9935 undjudom 10081 endjudisj 10082 djuen 10083 dju1p1e2 10087 dju1p1e2ALT 10088 xpdjuen 10093 mapdjuen 10094 djuxpdom 10099 djufi 10100 djuinf 10102 infdju1 10103 pwdju1 10104 pwdjudom 10128 isfin4p1 10228 pwxpndom2 10578 wunex2 10651 wuncval2 10660 tsk2 10678 efgmnvl 19611 frgpnabllem1 19770 dmdprdpr 19948 dprdpr 19949 psr1crng 22087 psr1assa 22088 psr1tos 22089 psr1bas 22091 vr1cl2 22093 ply1lss 22097 ply1subrg 22098 ply1ass23l 22127 ressply1bas2 22128 ressply1add 22130 ressply1mul 22131 ressply1vsca 22132 subrgply1 22133 ply1plusgfvi 22142 psr1ring 22147 psr1lmod 22149 psr1sca 22150 ply1ascl 22160 subrg1ascl 22161 subrg1asclcl 22162 subrgvr1 22163 subrgvr1cl 22164 coe1z 22165 coe1mul2lem1 22169 coe1mul2 22171 coe1tm 22175 evls1val 22223 evls1rhm 22225 evls1sca 22226 evl1val 22232 evl1rhm 22235 evl1sca 22237 evl1var 22239 evls1var 22241 mpfpf1 22254 pf1mpf 22255 pf1ind 22258 xkofvcn 23587 xpstopnlem1 23712 ufildom1 23829 deg1z 26008 deg1addle 26022 deg1vscale 26025 deg1vsca 26026 deg1mulle2 26030 deg1le0 26032 ply1nzb 26044 sltval2 27584 noextendlt 27597 sltsolem1 27603 nosepnelem 27607 nolt02o 27623 old1 27807 rankeq1o 36147 ssoninhaus 36424 onint1 36425 1oequni2o 37344 finxp1o 37368 finxpreclem3 37369 finxpreclem4 37370 finxpreclem5 37371 finxpsuclem 37373 pw2f1ocnv 43013 wepwsolem 43018 pwfi2f1o 43072 oaabsb 43270 oaordnr 43272 omnord1 43281 oege1 43282 oaomoencom 43293 omabs2 43308 omcl3g 43310 nadd1suc 43368 om2 43380 oe2 43382 safesnsupfiss 43391 safesnsupfidom1o 43393 safesnsupfilb 43394 1no 43412 nlim2NEW 43419 oa1cl 43423 sn1dom 43502 pr2dom 43503 tr3dom 43504 clsk1indlem4 44020 |
| Copyright terms: Public domain | W3C validator |