| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7677. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8394 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6369 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8404 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2830 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7751 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2829 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∅c0 4282 Oncon0 6314 suc csuc 6316 1oc1o 8387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-suc 6320 df-1o 8394 |
| This theorem is referenced by: 2on 8407 nlim2 8414 ord1eln01 8420 ondif2 8426 2oconcl 8427 fnoe 8434 oesuclem 8449 oecl 8461 o1p1e2 8464 om1r 8467 oe1m 8469 omword1 8497 omword2 8498 omlimcl 8502 oneo 8505 oewordi 8515 oelim2 8519 oeoa 8521 oeoe 8523 oeeui 8526 1onn 8564 oaabs2 8573 sucxpdom 9156 en2 9175 oancom 9552 cnfcom3lem 9604 ssttrcl 9616 ttrcltr 9617 dmttrcl 9622 ttrclselem2 9627 pm54.43lem 9904 pm54.43 9905 infxpenc 9920 infxpenc2 9924 undjudom 10070 endjudisj 10071 djuen 10072 dju1p1e2 10076 dju1p1e2ALT 10077 xpdjuen 10082 mapdjuen 10083 djuxpdom 10088 djufi 10089 djuinf 10091 infdju1 10092 pwdju1 10093 pwdjudom 10117 isfin4p1 10217 pwxpndom2 10567 wunex2 10640 wuncval2 10649 tsk2 10667 efgmnvl 19634 frgpnabllem1 19793 dmdprdpr 19971 dprdpr 19972 psr1crng 22118 psr1assa 22119 psr1tos 22120 psr1bas 22122 vr1cl2 22124 ply1lss 22128 ply1subrg 22129 ply1ass23l 22158 ressply1bas2 22159 ressply1add 22161 ressply1mul 22162 ressply1vsca 22163 subrgply1 22164 ply1plusgfvi 22173 psr1ring 22178 psr1lmod 22180 psr1sca 22181 ply1ascl 22191 subrg1ascl 22192 subrg1asclcl 22193 subrgvr1 22194 subrgvr1cl 22195 coe1z 22196 coe1mul2lem1 22200 coe1mul2 22202 coe1tm 22206 evls1val 22255 evls1rhm 22257 evls1sca 22258 evl1val 22264 evl1rhm 22267 evl1sca 22269 evl1var 22271 evls1var 22273 mpfpf1 22286 pf1mpf 22287 pf1ind 22290 xkofvcn 23619 xpstopnlem1 23744 ufildom1 23861 deg1z 26039 deg1addle 26053 deg1vscale 26056 deg1vsca 26057 deg1mulle2 26061 deg1le0 26063 ply1nzb 26075 sltval2 27615 noextendlt 27628 sltsolem1 27634 nosepnelem 27638 nolt02o 27654 old1 27840 rankeq1o 36287 ssoninhaus 36564 onint1 36565 1oequni2o 37485 finxp1o 37509 finxpreclem3 37510 finxpreclem4 37511 finxpreclem5 37512 finxpsuclem 37514 pw2f1ocnv 43194 wepwsolem 43199 pwfi2f1o 43253 oaabsb 43451 oaordnr 43453 omnord1 43462 oege1 43463 oaomoencom 43474 omabs2 43489 omcl3g 43491 nadd1suc 43549 om2 43561 oe2 43563 safesnsupfiss 43572 safesnsupfidom1o 43574 safesnsupfilb 43575 1no 43593 nlim2NEW 43600 oa1cl 43604 sn1dom 43683 pr2dom 43684 tr3dom 43685 clsk1indlem4 44201 |
| Copyright terms: Public domain | W3C validator |