![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7722. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8463 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6416 | . . 3 ⊢ ∅ ∈ On | |
3 | 1oex 8473 | . . . 4 ⊢ 1o ∈ V | |
4 | 1, 3 | eqeltrri 2831 | . . 3 ⊢ suc ∅ ∈ V |
5 | sucexeloni 7794 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
6 | 2, 4, 5 | mp2an 691 | . 2 ⊢ suc ∅ ∈ On |
7 | 1, 6 | eqeltri 2830 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ∅c0 4322 Oncon0 6362 suc csuc 6364 1oc1o 8456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6365 df-on 6366 df-suc 6368 df-1o 8463 |
This theorem is referenced by: 2on 8477 2onOLD 8478 1oexOLD 8483 nlim2 8487 ord1eln01 8493 ondif2 8499 2oconcl 8500 fnoe 8507 oesuclem 8522 oecl 8534 o1p1e2 8537 om1r 8540 oe1m 8542 omword1 8570 omword2 8571 omlimcl 8575 oneo 8578 oewordi 8588 oelim2 8592 oeoa 8594 oeoe 8596 oeeui 8599 1onn 8636 oaabs2 8645 enpr2dOLD 9047 sucxpdom 9252 en2 9278 oancom 9643 cnfcom3lem 9695 ssttrcl 9707 ttrcltr 9708 dmttrcl 9713 ttrclselem2 9718 pm54.43lem 9992 pm54.43 9993 infxpenc 10010 infxpenc2 10014 undjudom 10159 endjudisj 10160 djuen 10161 dju1p1e2 10165 dju1p1e2ALT 10166 xpdjuen 10171 mapdjuen 10172 djuxpdom 10177 djufi 10178 djuinf 10180 infdju1 10181 pwdju1 10182 pwdjudom 10208 isfin4p1 10307 pwxpndom2 10657 wunex2 10730 wuncval2 10739 tsk2 10757 efgmnvl 19577 frgpnabllem1 19736 dmdprdpr 19914 dprdpr 19915 psr1crng 21703 psr1assa 21704 psr1tos 21705 psr1bas 21707 vr1cl2 21709 ply1lss 21712 ply1subrg 21713 ressply1bas2 21742 ressply1add 21744 ressply1mul 21745 ressply1vsca 21746 subrgply1 21747 ply1plusgfvi 21756 psr1ring 21761 psr1lmod 21763 psr1sca 21764 ply1ascl 21772 subrg1ascl 21773 subrg1asclcl 21774 subrgvr1 21775 subrgvr1cl 21776 coe1z 21777 coe1mul2lem1 21781 coe1mul2 21783 coe1tm 21787 evls1val 21831 evls1rhm 21833 evls1sca 21834 evl1val 21840 evl1rhm 21843 evl1sca 21845 evl1var 21847 evls1var 21849 mpfpf1 21862 pf1mpf 21863 pf1ind 21866 xkofvcn 23180 xpstopnlem1 23305 ufildom1 23422 deg1z 25597 deg1addle 25611 deg1vscale 25614 deg1vsca 25615 deg1mulle2 25619 deg1le0 25621 ply1nzb 25632 sltval2 27149 noextendlt 27162 sltsolem1 27168 nosepnelem 27172 nolt02o 27188 old1 27360 rankeq1o 35132 ssoninhaus 35322 onint1 35323 1oequni2o 36238 finxp1o 36262 finxpreclem3 36263 finxpreclem4 36264 finxpreclem5 36265 finxpsuclem 36267 pw2f1ocnv 41762 wepwsolem 41770 pwfi2f1o 41824 oaabsb 42030 oaordnr 42032 omnord1 42041 oege1 42042 oaomoencom 42053 omabs2 42068 omcl3g 42070 nadd1suc 42128 om2 42141 oe2 42143 safesnsupfiss 42152 safesnsupfidom1o 42154 safesnsupfilb 42155 1no 42173 nlim2NEW 42180 oa1cl 42184 sn1dom 42263 pr2dom 42264 tr3dom 42265 clsk1indlem4 42781 ply1ass23l 47017 |
Copyright terms: Public domain | W3C validator |