| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7663. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8380 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6356 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8390 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2828 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7737 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2827 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4278 Oncon0 6301 suc csuc 6303 1oc1o 8373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-suc 6307 df-1o 8380 |
| This theorem is referenced by: 2on 8393 nlim2 8400 ord1eln01 8406 ondif2 8412 2oconcl 8413 fnoe 8420 oesuclem 8435 oecl 8447 o1p1e2 8450 om1r 8453 oe1m 8455 omword1 8483 omword2 8484 omlimcl 8488 oneo 8491 oewordi 8501 oelim2 8505 oeoa 8507 oeoe 8509 oeeui 8512 1onn 8550 oaabs2 8559 sucxpdom 9140 en2 9159 oancom 9536 cnfcom3lem 9588 ssttrcl 9600 ttrcltr 9601 dmttrcl 9606 ttrclselem2 9611 pm54.43lem 9888 pm54.43 9889 infxpenc 9904 infxpenc2 9908 undjudom 10054 endjudisj 10055 djuen 10056 dju1p1e2 10060 dju1p1e2ALT 10061 xpdjuen 10066 mapdjuen 10067 djuxpdom 10072 djufi 10073 djuinf 10075 infdju1 10076 pwdju1 10077 pwdjudom 10101 isfin4p1 10201 pwxpndom2 10551 wunex2 10624 wuncval2 10633 tsk2 10651 efgmnvl 19621 frgpnabllem1 19780 dmdprdpr 19958 dprdpr 19959 psr1crng 22094 psr1assa 22095 psr1tos 22096 psr1bas 22098 vr1cl2 22100 ply1lss 22104 ply1subrg 22105 ply1ass23l 22134 ressply1bas2 22135 ressply1add 22137 ressply1mul 22138 ressply1vsca 22139 subrgply1 22140 ply1plusgfvi 22149 psr1ring 22154 psr1lmod 22156 psr1sca 22157 ply1ascl 22167 subrg1ascl 22168 subrg1asclcl 22169 subrgvr1 22170 subrgvr1cl 22171 coe1z 22172 coe1mul2lem1 22176 coe1mul2 22178 coe1tm 22182 evls1val 22230 evls1rhm 22232 evls1sca 22233 evl1val 22239 evl1rhm 22242 evl1sca 22244 evl1var 22246 evls1var 22248 mpfpf1 22261 pf1mpf 22262 pf1ind 22265 xkofvcn 23594 xpstopnlem1 23719 ufildom1 23836 deg1z 26014 deg1addle 26028 deg1vscale 26031 deg1vsca 26032 deg1mulle2 26036 deg1le0 26038 ply1nzb 26050 sltval2 27590 noextendlt 27603 sltsolem1 27609 nosepnelem 27613 nolt02o 27629 old1 27815 rankeq1o 36205 ssoninhaus 36482 onint1 36483 1oequni2o 37402 finxp1o 37426 finxpreclem3 37427 finxpreclem4 37428 finxpreclem5 37429 finxpsuclem 37431 pw2f1ocnv 43070 wepwsolem 43075 pwfi2f1o 43129 oaabsb 43327 oaordnr 43329 omnord1 43338 oege1 43339 oaomoencom 43350 omabs2 43365 omcl3g 43367 nadd1suc 43425 om2 43437 oe2 43439 safesnsupfiss 43448 safesnsupfidom1o 43450 safesnsupfilb 43451 1no 43469 nlim2NEW 43476 oa1cl 43480 sn1dom 43559 pr2dom 43560 tr3dom 43561 clsk1indlem4 44077 |
| Copyright terms: Public domain | W3C validator |