| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7711. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8434 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6387 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8444 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2825 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7785 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2824 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∅c0 4296 Oncon0 6332 suc csuc 6334 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 df-1o 8434 |
| This theorem is referenced by: 2on 8447 nlim2 8454 ord1eln01 8460 ondif2 8466 2oconcl 8467 fnoe 8474 oesuclem 8489 oecl 8501 o1p1e2 8504 om1r 8507 oe1m 8509 omword1 8537 omword2 8538 omlimcl 8542 oneo 8545 oewordi 8555 oelim2 8559 oeoa 8561 oeoe 8563 oeeui 8566 1onn 8604 oaabs2 8613 enpr2dOLD 9021 sucxpdom 9202 en2 9226 oancom 9604 cnfcom3lem 9656 ssttrcl 9668 ttrcltr 9669 dmttrcl 9674 ttrclselem2 9679 pm54.43lem 9953 pm54.43 9954 infxpenc 9971 infxpenc2 9975 undjudom 10121 endjudisj 10122 djuen 10123 dju1p1e2 10127 dju1p1e2ALT 10128 xpdjuen 10133 mapdjuen 10134 djuxpdom 10139 djufi 10140 djuinf 10142 infdju1 10143 pwdju1 10144 pwdjudom 10168 isfin4p1 10268 pwxpndom2 10618 wunex2 10691 wuncval2 10700 tsk2 10718 efgmnvl 19644 frgpnabllem1 19803 dmdprdpr 19981 dprdpr 19982 psr1crng 22071 psr1assa 22072 psr1tos 22073 psr1bas 22075 vr1cl2 22077 ply1lss 22081 ply1subrg 22082 ply1ass23l 22111 ressply1bas2 22112 ressply1add 22114 ressply1mul 22115 ressply1vsca 22116 subrgply1 22117 ply1plusgfvi 22126 psr1ring 22131 psr1lmod 22133 psr1sca 22134 ply1ascl 22144 subrg1ascl 22145 subrg1asclcl 22146 subrgvr1 22147 subrgvr1cl 22148 coe1z 22149 coe1mul2lem1 22153 coe1mul2 22155 coe1tm 22159 evls1val 22207 evls1rhm 22209 evls1sca 22210 evl1val 22216 evl1rhm 22219 evl1sca 22221 evl1var 22223 evls1var 22225 mpfpf1 22238 pf1mpf 22239 pf1ind 22242 xkofvcn 23571 xpstopnlem1 23696 ufildom1 23813 deg1z 25992 deg1addle 26006 deg1vscale 26009 deg1vsca 26010 deg1mulle2 26014 deg1le0 26016 ply1nzb 26028 sltval2 27568 noextendlt 27581 sltsolem1 27587 nosepnelem 27591 nolt02o 27607 old1 27787 rankeq1o 36159 ssoninhaus 36436 onint1 36437 1oequni2o 37356 finxp1o 37380 finxpreclem3 37381 finxpreclem4 37382 finxpreclem5 37383 finxpsuclem 37385 pw2f1ocnv 43026 wepwsolem 43031 pwfi2f1o 43085 oaabsb 43283 oaordnr 43285 omnord1 43294 oege1 43295 oaomoencom 43306 omabs2 43321 omcl3g 43323 nadd1suc 43381 om2 43393 oe2 43395 safesnsupfiss 43404 safesnsupfidom1o 43406 safesnsupfilb 43407 1no 43425 nlim2NEW 43432 oa1cl 43436 sn1dom 43515 pr2dom 43516 tr3dom 43517 clsk1indlem4 44033 |
| Copyright terms: Public domain | W3C validator |