Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7597. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8306 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6323 | . . 3 ⊢ ∅ ∈ On | |
3 | 1oex 8316 | . . . 4 ⊢ 1o ∈ V | |
4 | 1, 3 | eqeltrri 2837 | . . 3 ⊢ suc ∅ ∈ V |
5 | sucexeloni 7667 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
6 | 2, 4, 5 | mp2an 689 | . 2 ⊢ suc ∅ ∈ On |
7 | 1, 6 | eqeltri 2836 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3433 ∅c0 4257 Oncon0 6270 suc csuc 6272 1oc1o 8299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-tr 5193 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6273 df-on 6274 df-suc 6276 df-1o 8306 |
This theorem is referenced by: 2on 8320 2onOLD 8321 1oexOLD 8325 nlim2 8329 ord1eln01 8335 ondif2 8341 2oconcl 8342 fnoe 8349 oesuclem 8364 oecl 8376 o1p1e2 8379 o2p2e4OLD 8381 om1r 8383 oe1m 8385 omword1 8413 omword2 8414 omlimcl 8418 oneo 8421 oewordi 8431 oelim2 8435 oeoa 8437 oeoe 8439 oeeui 8442 1onn 8479 oaabs2 8488 enpr2d 8847 sucxpdom 9041 oancom 9418 cnfcom3lem 9470 ssttrcl 9482 ttrcltr 9483 dmttrcl 9488 ttrclselem2 9493 pm54.43lem 9767 pm54.43 9768 infxpenc 9783 infxpenc2 9787 undjudom 9932 endjudisj 9933 djuen 9934 dju1p1e2 9938 dju1p1e2ALT 9939 xpdjuen 9944 mapdjuen 9945 djuxpdom 9950 djufi 9951 djuinf 9953 infdju1 9954 pwdju1 9955 pwdjudom 9981 isfin4p1 10080 pwxpndom2 10430 wunex2 10503 wuncval2 10512 tsk2 10530 efgmnvl 19329 frgpnabllem1 19483 dmdprdpr 19661 dprdpr 19662 psr1crng 21367 psr1assa 21368 psr1tos 21369 psr1bas 21371 vr1cl2 21373 ply1lss 21376 ply1subrg 21377 ressply1bas2 21408 ressply1add 21410 ressply1mul 21411 ressply1vsca 21412 subrgply1 21413 ply1plusgfvi 21422 psr1ring 21427 psr1lmod 21429 psr1sca 21430 ply1ascl 21438 subrg1ascl 21439 subrg1asclcl 21440 subrgvr1 21441 subrgvr1cl 21442 coe1z 21443 coe1mul2lem1 21447 coe1mul2 21449 coe1tm 21453 evls1val 21495 evls1rhm 21497 evls1sca 21498 evl1val 21504 evl1rhm 21507 evl1sca 21509 evl1var 21511 evls1var 21513 mpfpf1 21526 pf1mpf 21527 pf1ind 21530 xkofvcn 22844 xpstopnlem1 22969 ufildom1 23086 deg1z 25261 deg1addle 25275 deg1vscale 25278 deg1vsca 25279 deg1mulle2 25283 deg1le0 25285 ply1nzb 25296 sltval2 33868 noextendlt 33881 sltsolem1 33887 nosepnelem 33891 nolt02o 33907 rankeq1o 34482 ssoninhaus 34646 onint1 34647 1oequni2o 35548 finxp1o 35572 finxpreclem3 35573 finxpreclem4 35574 finxpreclem5 35575 finxpsuclem 35577 pw2f1ocnv 40866 wepwsolem 40874 pwfi2f1o 40928 nlim2NEW 41057 oa1cl 41061 sn1dom 41140 pr2dom 41141 tr3dom 41142 clsk1indlem4 41661 ply1ass23l 45734 |
Copyright terms: Public domain | W3C validator |