| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7727. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8478 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6407 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8488 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2831 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7801 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2830 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∅c0 4308 Oncon0 6352 suc csuc 6354 1oc1o 8471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 df-1o 8478 |
| This theorem is referenced by: 2on 8492 2onOLD 8493 nlim2 8500 ord1eln01 8506 ondif2 8512 2oconcl 8513 fnoe 8520 oesuclem 8535 oecl 8547 o1p1e2 8550 om1r 8553 oe1m 8555 omword1 8583 omword2 8584 omlimcl 8588 oneo 8591 oewordi 8601 oelim2 8605 oeoa 8607 oeoe 8609 oeeui 8612 1onn 8650 oaabs2 8659 enpr2dOLD 9062 sucxpdom 9261 en2 9285 oancom 9663 cnfcom3lem 9715 ssttrcl 9727 ttrcltr 9728 dmttrcl 9733 ttrclselem2 9738 pm54.43lem 10012 pm54.43 10013 infxpenc 10030 infxpenc2 10034 undjudom 10180 endjudisj 10181 djuen 10182 dju1p1e2 10186 dju1p1e2ALT 10187 xpdjuen 10192 mapdjuen 10193 djuxpdom 10198 djufi 10199 djuinf 10201 infdju1 10202 pwdju1 10203 pwdjudom 10227 isfin4p1 10327 pwxpndom2 10677 wunex2 10750 wuncval2 10759 tsk2 10777 efgmnvl 19693 frgpnabllem1 19852 dmdprdpr 20030 dprdpr 20031 psr1crng 22120 psr1assa 22121 psr1tos 22122 psr1bas 22124 vr1cl2 22126 ply1lss 22130 ply1subrg 22131 ply1ass23l 22160 ressply1bas2 22161 ressply1add 22163 ressply1mul 22164 ressply1vsca 22165 subrgply1 22166 ply1plusgfvi 22175 psr1ring 22180 psr1lmod 22182 psr1sca 22183 ply1ascl 22193 subrg1ascl 22194 subrg1asclcl 22195 subrgvr1 22196 subrgvr1cl 22197 coe1z 22198 coe1mul2lem1 22202 coe1mul2 22204 coe1tm 22208 evls1val 22256 evls1rhm 22258 evls1sca 22259 evl1val 22265 evl1rhm 22268 evl1sca 22270 evl1var 22272 evls1var 22274 mpfpf1 22287 pf1mpf 22288 pf1ind 22291 xkofvcn 23620 xpstopnlem1 23745 ufildom1 23862 deg1z 26042 deg1addle 26056 deg1vscale 26059 deg1vsca 26060 deg1mulle2 26064 deg1le0 26066 ply1nzb 26078 sltval2 27618 noextendlt 27631 sltsolem1 27637 nosepnelem 27641 nolt02o 27657 old1 27831 rankeq1o 36135 ssoninhaus 36412 onint1 36413 1oequni2o 37332 finxp1o 37356 finxpreclem3 37357 finxpreclem4 37358 finxpreclem5 37359 finxpsuclem 37361 pw2f1ocnv 43008 wepwsolem 43013 pwfi2f1o 43067 oaabsb 43265 oaordnr 43267 omnord1 43276 oege1 43277 oaomoencom 43288 omabs2 43303 omcl3g 43305 nadd1suc 43363 om2 43375 oe2 43377 safesnsupfiss 43386 safesnsupfidom1o 43388 safesnsupfilb 43389 1no 43407 nlim2NEW 43414 oa1cl 43418 sn1dom 43497 pr2dom 43498 tr3dom 43499 clsk1indlem4 44015 |
| Copyright terms: Public domain | W3C validator |