| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7714. (Revised by BTernaryTau, 30-Nov-2024.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 8437 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 6390 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 1oex 8447 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 1, 3 | eqeltrri 2826 | . . 3 ⊢ suc ∅ ∈ V |
| 5 | sucexeloni 7788 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ suc ∅ ∈ On |
| 7 | 1, 6 | eqeltri 2825 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∅c0 4299 Oncon0 6335 suc csuc 6337 1oc1o 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 df-1o 8437 |
| This theorem is referenced by: 2on 8450 nlim2 8457 ord1eln01 8463 ondif2 8469 2oconcl 8470 fnoe 8477 oesuclem 8492 oecl 8504 o1p1e2 8507 om1r 8510 oe1m 8512 omword1 8540 omword2 8541 omlimcl 8545 oneo 8548 oewordi 8558 oelim2 8562 oeoa 8564 oeoe 8566 oeeui 8569 1onn 8607 oaabs2 8616 enpr2dOLD 9024 sucxpdom 9209 en2 9233 oancom 9611 cnfcom3lem 9663 ssttrcl 9675 ttrcltr 9676 dmttrcl 9681 ttrclselem2 9686 pm54.43lem 9960 pm54.43 9961 infxpenc 9978 infxpenc2 9982 undjudom 10128 endjudisj 10129 djuen 10130 dju1p1e2 10134 dju1p1e2ALT 10135 xpdjuen 10140 mapdjuen 10141 djuxpdom 10146 djufi 10147 djuinf 10149 infdju1 10150 pwdju1 10151 pwdjudom 10175 isfin4p1 10275 pwxpndom2 10625 wunex2 10698 wuncval2 10707 tsk2 10725 efgmnvl 19651 frgpnabllem1 19810 dmdprdpr 19988 dprdpr 19989 psr1crng 22078 psr1assa 22079 psr1tos 22080 psr1bas 22082 vr1cl2 22084 ply1lss 22088 ply1subrg 22089 ply1ass23l 22118 ressply1bas2 22119 ressply1add 22121 ressply1mul 22122 ressply1vsca 22123 subrgply1 22124 ply1plusgfvi 22133 psr1ring 22138 psr1lmod 22140 psr1sca 22141 ply1ascl 22151 subrg1ascl 22152 subrg1asclcl 22153 subrgvr1 22154 subrgvr1cl 22155 coe1z 22156 coe1mul2lem1 22160 coe1mul2 22162 coe1tm 22166 evls1val 22214 evls1rhm 22216 evls1sca 22217 evl1val 22223 evl1rhm 22226 evl1sca 22228 evl1var 22230 evls1var 22232 mpfpf1 22245 pf1mpf 22246 pf1ind 22249 xkofvcn 23578 xpstopnlem1 23703 ufildom1 23820 deg1z 25999 deg1addle 26013 deg1vscale 26016 deg1vsca 26017 deg1mulle2 26021 deg1le0 26023 ply1nzb 26035 sltval2 27575 noextendlt 27588 sltsolem1 27594 nosepnelem 27598 nolt02o 27614 old1 27794 rankeq1o 36166 ssoninhaus 36443 onint1 36444 1oequni2o 37363 finxp1o 37387 finxpreclem3 37388 finxpreclem4 37389 finxpreclem5 37390 finxpsuclem 37392 pw2f1ocnv 43033 wepwsolem 43038 pwfi2f1o 43092 oaabsb 43290 oaordnr 43292 omnord1 43301 oege1 43302 oaomoencom 43313 omabs2 43328 omcl3g 43330 nadd1suc 43388 om2 43400 oe2 43402 safesnsupfiss 43411 safesnsupfidom1o 43413 safesnsupfilb 43414 1no 43432 nlim2NEW 43439 oa1cl 43443 sn1dom 43522 pr2dom 43523 tr3dom 43524 clsk1indlem4 44040 |
| Copyright terms: Public domain | W3C validator |