![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1on | Structured version Visualization version GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7725. (Revised by BTernaryTau, 30-Nov-2024.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 8466 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 6419 | . . 3 ⊢ ∅ ∈ On | |
3 | 1oex 8476 | . . . 4 ⊢ 1o ∈ V | |
4 | 1, 3 | eqeltrri 2831 | . . 3 ⊢ suc ∅ ∈ V |
5 | sucexeloni 7797 | . . 3 ⊢ ((∅ ∈ On ∧ suc ∅ ∈ V) → suc ∅ ∈ On) | |
6 | 2, 4, 5 | mp2an 691 | . 2 ⊢ suc ∅ ∈ On |
7 | 1, 6 | eqeltri 2830 | 1 ⊢ 1o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ∅c0 4323 Oncon0 6365 suc csuc 6367 1oc1o 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-suc 6371 df-1o 8466 |
This theorem is referenced by: 2on 8480 2onOLD 8481 1oexOLD 8486 nlim2 8490 ord1eln01 8496 ondif2 8502 2oconcl 8503 fnoe 8510 oesuclem 8525 oecl 8537 o1p1e2 8540 om1r 8543 oe1m 8545 omword1 8573 omword2 8574 omlimcl 8578 oneo 8581 oewordi 8591 oelim2 8595 oeoa 8597 oeoe 8599 oeeui 8602 1onn 8639 oaabs2 8648 enpr2dOLD 9050 sucxpdom 9255 en2 9281 oancom 9646 cnfcom3lem 9698 ssttrcl 9710 ttrcltr 9711 dmttrcl 9716 ttrclselem2 9721 pm54.43lem 9995 pm54.43 9996 infxpenc 10013 infxpenc2 10017 undjudom 10162 endjudisj 10163 djuen 10164 dju1p1e2 10168 dju1p1e2ALT 10169 xpdjuen 10174 mapdjuen 10175 djuxpdom 10180 djufi 10181 djuinf 10183 infdju1 10184 pwdju1 10185 pwdjudom 10211 isfin4p1 10310 pwxpndom2 10660 wunex2 10733 wuncval2 10742 tsk2 10760 efgmnvl 19582 frgpnabllem1 19741 dmdprdpr 19919 dprdpr 19920 psr1crng 21711 psr1assa 21712 psr1tos 21713 psr1bas 21715 vr1cl2 21717 ply1lss 21720 ply1subrg 21721 ressply1bas2 21750 ressply1add 21752 ressply1mul 21753 ressply1vsca 21754 subrgply1 21755 ply1plusgfvi 21764 psr1ring 21769 psr1lmod 21771 psr1sca 21772 ply1ascl 21780 subrg1ascl 21781 subrg1asclcl 21782 subrgvr1 21783 subrgvr1cl 21784 coe1z 21785 coe1mul2lem1 21789 coe1mul2 21791 coe1tm 21795 evls1val 21839 evls1rhm 21841 evls1sca 21842 evl1val 21848 evl1rhm 21851 evl1sca 21853 evl1var 21855 evls1var 21857 mpfpf1 21870 pf1mpf 21871 pf1ind 21874 xkofvcn 23188 xpstopnlem1 23313 ufildom1 23430 deg1z 25605 deg1addle 25619 deg1vscale 25622 deg1vsca 25623 deg1mulle2 25627 deg1le0 25629 ply1nzb 25640 sltval2 27159 noextendlt 27172 sltsolem1 27178 nosepnelem 27182 nolt02o 27198 old1 27370 rankeq1o 35143 ssoninhaus 35333 onint1 35334 1oequni2o 36249 finxp1o 36273 finxpreclem3 36274 finxpreclem4 36275 finxpreclem5 36276 finxpsuclem 36278 pw2f1ocnv 41776 wepwsolem 41784 pwfi2f1o 41838 oaabsb 42044 oaordnr 42046 omnord1 42055 oege1 42056 oaomoencom 42067 omabs2 42082 omcl3g 42084 nadd1suc 42142 om2 42155 oe2 42157 safesnsupfiss 42166 safesnsupfidom1o 42168 safesnsupfilb 42169 1no 42187 nlim2NEW 42194 oa1cl 42198 sn1dom 42277 pr2dom 42278 tr3dom 42279 clsk1indlem4 42795 ply1ass23l 47063 |
Copyright terms: Public domain | W3C validator |