Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomadd Structured version   Visualization version   GIF version

Theorem rngohomadd 37970
Description: Ring homomorphisms preserve addition. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghomadd.1 𝐺 = (1st𝑅)
rnghomadd.2 𝑋 = ran 𝐺
rnghomadd.3 𝐽 = (1st𝑆)
Assertion
Ref Expression
rngohomadd (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵)))

Proof of Theorem rngohomadd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghomadd.1 . . . . . . 7 𝐺 = (1st𝑅)
2 eqid 2730 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
3 rnghomadd.2 . . . . . . 7 𝑋 = ran 𝐺
4 eqid 2730 . . . . . . 7 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
5 rnghomadd.3 . . . . . . 7 𝐽 = (1st𝑆)
6 eqid 2730 . . . . . . 7 (2nd𝑆) = (2nd𝑆)
7 eqid 2730 . . . . . . 7 ran 𝐽 = ran 𝐽
8 eqid 2730 . . . . . . 7 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37966 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋⟶ran 𝐽 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))))
109biimpa 476 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋⟶ran 𝐽 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))))
1110simp3d 1144 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
12113impa 1109 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
13 simpl 482 . . . 4 (((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
14132ralimi 3104 . . 3 (∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
1512, 14syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
16 fvoveq1 7413 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦)))
17 fveq2 6861 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1817oveq1d 7405 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝐴)𝐽(𝐹𝑦)))
1916, 18eqeq12d 2746 . . 3 (𝑥 = 𝐴 → ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐺𝑦)) = ((𝐹𝐴)𝐽(𝐹𝑦))))
20 oveq2 7398 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
2120fveq2d 6865 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵)))
22 fveq2 6861 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2322oveq2d 7406 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐽(𝐹𝑦)) = ((𝐹𝐴)𝐽(𝐹𝐵)))
2421, 23eqeq12d 2746 . . 3 (𝑦 = 𝐵 → ((𝐹‘(𝐴𝐺𝑦)) = ((𝐹𝐴)𝐽(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵))))
2519, 24rspc2v 3602 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵))))
2615, 25mpan9 506 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  GIdcgi 30426  RingOpscrngo 37895   RingOpsHom crngohom 37961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-rngohom 37964
This theorem is referenced by:  rngogrphom  37972  rngohomco  37975  rngoisocnv  37982  keridl  38033
  Copyright terms: Public domain W3C validator