Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohommul Structured version   Visualization version   GIF version

Theorem rngohommul 37964
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghommul.1 𝐺 = (1st𝑅)
rnghommul.2 𝑋 = ran 𝐺
rnghommul.3 𝐻 = (2nd𝑅)
rnghommul.4 𝐾 = (2nd𝑆)
Assertion
Ref Expression
rngohommul (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))

Proof of Theorem rngohommul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghommul.1 . . . . . . 7 𝐺 = (1st𝑅)
2 rnghommul.3 . . . . . . 7 𝐻 = (2nd𝑅)
3 rnghommul.2 . . . . . . 7 𝑋 = ran 𝐺
4 eqid 2729 . . . . . . 7 (GId‘𝐻) = (GId‘𝐻)
5 eqid 2729 . . . . . . 7 (1st𝑆) = (1st𝑆)
6 rnghommul.4 . . . . . . 7 𝐾 = (2nd𝑆)
7 eqid 2729 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
8 eqid 2729 . . . . . . 7 (GId‘𝐾) = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37959 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋⟶ran (1st𝑆) ∧ (𝐹‘(GId‘𝐻)) = (GId‘𝐾) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
109biimpa 476 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋⟶ran (1st𝑆) ∧ (𝐹‘(GId‘𝐻)) = (GId‘𝐾) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
1110simp3d 1144 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
12113impa 1109 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
13 simpr 484 . . . 4 (((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))) → (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
14132ralimi 3103 . . 3 (∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
1512, 14syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
16 fvoveq1 7410 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐻𝑦)) = (𝐹‘(𝐴𝐻𝑦)))
17 fveq2 6858 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1817oveq1d 7402 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐾(𝐹𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦)))
1916, 18eqeq12d 2745 . . 3 (𝑥 = 𝐴 → ((𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐻𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦))))
20 oveq2 7395 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
2120fveq2d 6862 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐻𝑦)) = (𝐹‘(𝐴𝐻𝐵)))
22 fveq2 6858 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2322oveq2d 7403 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐾(𝐹𝑦)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
2421, 23eqeq12d 2745 . . 3 (𝑦 = 𝐵 → ((𝐹‘(𝐴𝐻𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵))))
2519, 24rspc2v 3599 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵))))
2615, 25mpan9 506 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GIdcgi 30419  RingOpscrngo 37888   RingOpsHom crngohom 37954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-rngohom 37957
This theorem is referenced by:  rngohomco  37968  rngoisocnv  37975  crngohomfo  38000  keridl  38026
  Copyright terms: Public domain W3C validator