Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohommul Structured version   Visualization version   GIF version

Theorem rngohommul 36826
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghommul.1 𝐺 = (1st β€˜π‘…)
rnghommul.2 𝑋 = ran 𝐺
rnghommul.3 𝐻 = (2nd β€˜π‘…)
rnghommul.4 𝐾 = (2nd β€˜π‘†)
Assertion
Ref Expression
rngohommul (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (πΉβ€˜(𝐴𝐻𝐡)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π΅)))

Proof of Theorem rngohommul
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghommul.1 . . . . . . 7 𝐺 = (1st β€˜π‘…)
2 rnghommul.3 . . . . . . 7 𝐻 = (2nd β€˜π‘…)
3 rnghommul.2 . . . . . . 7 𝑋 = ran 𝐺
4 eqid 2732 . . . . . . 7 (GIdβ€˜π») = (GIdβ€˜π»)
5 eqid 2732 . . . . . . 7 (1st β€˜π‘†) = (1st β€˜π‘†)
6 rnghommul.4 . . . . . . 7 𝐾 = (2nd β€˜π‘†)
7 eqid 2732 . . . . . . 7 ran (1st β€˜π‘†) = ran (1st β€˜π‘†)
8 eqid 2732 . . . . . . 7 (GIdβ€˜πΎ) = (GIdβ€˜πΎ)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 36821 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:π‘‹βŸΆran (1st β€˜π‘†) ∧ (πΉβ€˜(GIdβ€˜π»)) = (GIdβ€˜πΎ) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))))))
109biimpa 477 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹:π‘‹βŸΆran (1st β€˜π‘†) ∧ (πΉβ€˜(GIdβ€˜π»)) = (GIdβ€˜πΎ) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)))))
1110simp3d 1144 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))))
12113impa 1110 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))))
13 simpr 485 . . . 4 (((πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))) β†’ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)))
14132ralimi 3123 . . 3 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)))
1512, 14syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)))
16 fvoveq1 7428 . . . 4 (π‘₯ = 𝐴 β†’ (πΉβ€˜(π‘₯𝐻𝑦)) = (πΉβ€˜(𝐴𝐻𝑦)))
17 fveq2 6888 . . . . 5 (π‘₯ = 𝐴 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π΄))
1817oveq1d 7420 . . . 4 (π‘₯ = 𝐴 β†’ ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π‘¦)))
1916, 18eqeq12d 2748 . . 3 (π‘₯ = 𝐴 β†’ ((πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)) ↔ (πΉβ€˜(𝐴𝐻𝑦)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π‘¦))))
20 oveq2 7413 . . . . 5 (𝑦 = 𝐡 β†’ (𝐴𝐻𝑦) = (𝐴𝐻𝐡))
2120fveq2d 6892 . . . 4 (𝑦 = 𝐡 β†’ (πΉβ€˜(𝐴𝐻𝑦)) = (πΉβ€˜(𝐴𝐻𝐡)))
22 fveq2 6888 . . . . 5 (𝑦 = 𝐡 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π΅))
2322oveq2d 7421 . . . 4 (𝑦 = 𝐡 β†’ ((πΉβ€˜π΄)𝐾(πΉβ€˜π‘¦)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π΅)))
2421, 23eqeq12d 2748 . . 3 (𝑦 = 𝐡 β†’ ((πΉβ€˜(𝐴𝐻𝑦)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π‘¦)) ↔ (πΉβ€˜(𝐴𝐻𝐡)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π΅))))
2519, 24rspc2v 3621 . 2 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)) β†’ (πΉβ€˜(𝐴𝐻𝐡)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π΅))))
2615, 25mpan9 507 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (πΉβ€˜(𝐴𝐻𝐡)) = ((πΉβ€˜π΄)𝐾(πΉβ€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  GIdcgi 29730  RingOpscrngo 36750   RngHom crnghom 36816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-rngohom 36819
This theorem is referenced by:  rngohomco  36830  rngoisocnv  36837  crngohomfo  36862  keridl  36888
  Copyright terms: Public domain W3C validator