Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohommul Structured version   Visualization version   GIF version

Theorem rngohommul 36055
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghommul.1 𝐺 = (1st𝑅)
rnghommul.2 𝑋 = ran 𝐺
rnghommul.3 𝐻 = (2nd𝑅)
rnghommul.4 𝐾 = (2nd𝑆)
Assertion
Ref Expression
rngohommul (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))

Proof of Theorem rngohommul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghommul.1 . . . . . . 7 𝐺 = (1st𝑅)
2 rnghommul.3 . . . . . . 7 𝐻 = (2nd𝑅)
3 rnghommul.2 . . . . . . 7 𝑋 = ran 𝐺
4 eqid 2738 . . . . . . 7 (GId‘𝐻) = (GId‘𝐻)
5 eqid 2738 . . . . . . 7 (1st𝑆) = (1st𝑆)
6 rnghommul.4 . . . . . . 7 𝐾 = (2nd𝑆)
7 eqid 2738 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
8 eqid 2738 . . . . . . 7 (GId‘𝐾) = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 36050 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋⟶ran (1st𝑆) ∧ (𝐹‘(GId‘𝐻)) = (GId‘𝐾) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
109biimpa 476 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋⟶ran (1st𝑆) ∧ (𝐹‘(GId‘𝐻)) = (GId‘𝐾) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
1110simp3d 1142 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
12113impa 1108 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
13 simpr 484 . . . 4 (((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))) → (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
14132ralimi 3087 . . 3 (∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
1512, 14syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
16 fvoveq1 7278 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐻𝑦)) = (𝐹‘(𝐴𝐻𝑦)))
17 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1817oveq1d 7270 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐾(𝐹𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦)))
1916, 18eqeq12d 2754 . . 3 (𝑥 = 𝐴 → ((𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐻𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦))))
20 oveq2 7263 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
2120fveq2d 6760 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐻𝑦)) = (𝐹‘(𝐴𝐻𝐵)))
22 fveq2 6756 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2322oveq2d 7271 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐾(𝐹𝑦)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
2421, 23eqeq12d 2754 . . 3 (𝑦 = 𝐵 → ((𝐹‘(𝐴𝐻𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵))))
2519, 24rspc2v 3562 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵))))
2615, 25mpan9 506 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  GIdcgi 28753  RingOpscrngo 35979   RngHom crnghom 36045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-rngohom 36048
This theorem is referenced by:  rngohomco  36059  rngoisocnv  36066  crngohomfo  36091  keridl  36117
  Copyright terms: Public domain W3C validator