Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohommul Structured version   Visualization version   GIF version

Theorem rngohommul 37977
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghommul.1 𝐺 = (1st𝑅)
rnghommul.2 𝑋 = ran 𝐺
rnghommul.3 𝐻 = (2nd𝑅)
rnghommul.4 𝐾 = (2nd𝑆)
Assertion
Ref Expression
rngohommul (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))

Proof of Theorem rngohommul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghommul.1 . . . . . . 7 𝐺 = (1st𝑅)
2 rnghommul.3 . . . . . . 7 𝐻 = (2nd𝑅)
3 rnghommul.2 . . . . . . 7 𝑋 = ran 𝐺
4 eqid 2737 . . . . . . 7 (GId‘𝐻) = (GId‘𝐻)
5 eqid 2737 . . . . . . 7 (1st𝑆) = (1st𝑆)
6 rnghommul.4 . . . . . . 7 𝐾 = (2nd𝑆)
7 eqid 2737 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
8 eqid 2737 . . . . . . 7 (GId‘𝐾) = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37972 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋⟶ran (1st𝑆) ∧ (𝐹‘(GId‘𝐻)) = (GId‘𝐾) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
109biimpa 476 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋⟶ran (1st𝑆) ∧ (𝐹‘(GId‘𝐻)) = (GId‘𝐾) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
1110simp3d 1145 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
12113impa 1110 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
13 simpr 484 . . . 4 (((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))) → (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
14132ralimi 3123 . . 3 (∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
1512, 14syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
16 fvoveq1 7454 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐻𝑦)) = (𝐹‘(𝐴𝐻𝑦)))
17 fveq2 6906 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1817oveq1d 7446 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐾(𝐹𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦)))
1916, 18eqeq12d 2753 . . 3 (𝑥 = 𝐴 → ((𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐻𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦))))
20 oveq2 7439 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
2120fveq2d 6910 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐻𝑦)) = (𝐹‘(𝐴𝐻𝐵)))
22 fveq2 6906 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2322oveq2d 7447 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐾(𝐹𝑦)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
2421, 23eqeq12d 2753 . . 3 (𝑦 = 𝐵 → ((𝐹‘(𝐴𝐻𝑦)) = ((𝐹𝐴)𝐾(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵))))
2519, 24rspc2v 3633 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵))))
2615, 25mpan9 506 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  GIdcgi 30509  RingOpscrngo 37901   RingOpsHom crngohom 37967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-rngohom 37970
This theorem is referenced by:  rngohomco  37981  rngoisocnv  37988  crngohomfo  38013  keridl  38039
  Copyright terms: Public domain W3C validator