MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettri2 Structured version   Visualization version   GIF version

Theorem xmettri2 24235
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem xmettri2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6898 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 isxmet 24219 . . . . . . 7 (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
43ibi 267 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
5 simpr 484 . . . . . 6 ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
652ralimi 3104 . . . . 5 (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
74, 6simpl2im 503 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
8 oveq1 7397 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦))
9 oveq2 7398 . . . . . . 7 (𝑥 = 𝐴 → (𝑧𝐷𝑥) = (𝑧𝐷𝐴))
109oveq1d 7405 . . . . . 6 (𝑥 = 𝐴 → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)))
118, 10breq12d 5123 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦))))
12 oveq2 7398 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵))
13 oveq2 7398 . . . . . . 7 (𝑦 = 𝐵 → (𝑧𝐷𝑦) = (𝑧𝐷𝐵))
1413oveq2d 7406 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)))
1512, 14breq12d 5123 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵))))
16 oveq1 7397 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐷𝐴) = (𝐶𝐷𝐴))
17 oveq1 7397 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐷𝐵) = (𝐶𝐷𝐵))
1816, 17oveq12d 7408 . . . . . 6 (𝑧 = 𝐶 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
1918breq2d 5122 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2011, 15, 19rspc3v 3607 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
217, 20syl5 34 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
22213comr 1125 . 2 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2322impcom 407 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110   × cxp 5639  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214  cle 11216   +𝑒 cxad 13077  ∞Metcxmet 21256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-xr 11219  df-xmet 21264
This theorem is referenced by:  mettri2  24236  xmetge0  24239  xmetsym  24242  xmetpsmet  24243  xmettri  24246  xmetres2  24256  prdsxmetlem  24263  imasf1oxmet  24270  xblss2  24297  xmstri2  24361  comet  24408
  Copyright terms: Public domain W3C validator