MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettri2 Structured version   Visualization version   GIF version

Theorem xmettri2 22868
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem xmettri2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6698 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 isxmet 22852 . . . . . . 7 (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
43ibi 268 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
5 simpr 485 . . . . . 6 ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
652ralimi 3165 . . . . 5 (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
74, 6simpl2im 504 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
8 oveq1 7158 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦))
9 oveq2 7159 . . . . . . 7 (𝑥 = 𝐴 → (𝑧𝐷𝑥) = (𝑧𝐷𝐴))
109oveq1d 7166 . . . . . 6 (𝑥 = 𝐴 → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)))
118, 10breq12d 5075 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦))))
12 oveq2 7159 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵))
13 oveq2 7159 . . . . . . 7 (𝑦 = 𝐵 → (𝑧𝐷𝑦) = (𝑧𝐷𝐵))
1413oveq2d 7167 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)))
1512, 14breq12d 5075 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵))))
16 oveq1 7158 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐷𝐴) = (𝐶𝐷𝐴))
17 oveq1 7158 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐷𝐵) = (𝐶𝐷𝐵))
1816, 17oveq12d 7169 . . . . . 6 (𝑧 = 𝐶 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
1918breq2d 5074 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2011, 15, 19rspc3v 3639 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
217, 20syl5 34 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
22213comr 1119 . 2 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2322impcom 408 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142   class class class wbr 5062   × cxp 5551  dom cdm 5553  wf 6347  cfv 6351  (class class class)co 7151  0cc0 10529  *cxr 10666  cle 10668   +𝑒 cxad 12498  ∞Metcxmet 20449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-map 8401  df-xr 10671  df-xmet 20457
This theorem is referenced by:  mettri2  22869  xmetge0  22872  xmetsym  22875  xmetpsmet  22876  xmettri  22879  xmetres2  22889  prdsxmetlem  22896  imasf1oxmet  22903  xblss2  22930  xmstri2  22994  comet  23041
  Copyright terms: Public domain W3C validator