MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmpo Structured version   Visualization version   GIF version

Theorem fnmpo 8010
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 3458 . . 3 (𝐶𝑉𝐶 ∈ V)
212ralimi 3103 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴𝑦𝐵 𝐶 ∈ V)
3 fmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43fmpo 8009 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹:(𝐴 × 𝐵)⟶V)
5 dffn2 6661 . . 3 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
64, 5bitr4i 278 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 Fn (𝐴 × 𝐵))
72, 6sylib 218 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437   × cxp 5619   Fn wfn 6484  wf 6485  cmpo 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931
This theorem is referenced by:  fnmpoi  8011  dmmpoga  8014  fnmpoovd  8026  fsplitfpar  8057  genpdm  10904  isofn  17690  brric  20428  mpocti  32721  f1od2  32726  cnre2csqima  33996  aks6d1c6lem3  42338  elrnmpoid  45388  smflimlem3  46933  smflimlem6  46936  invfn  49191  iinfssclem2  49216  imasubclem2  49266
  Copyright terms: Public domain W3C validator