MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmpo Structured version   Visualization version   GIF version

Theorem fnmpo 8011
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 3459 . . 3 (𝐶𝑉𝐶 ∈ V)
212ralimi 3099 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴𝑦𝐵 𝐶 ∈ V)
3 fmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43fmpo 8010 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹:(𝐴 × 𝐵)⟶V)
5 dffn2 6658 . . 3 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
64, 5bitr4i 278 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 Fn (𝐴 × 𝐵))
72, 6sylib 218 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438   × cxp 5621   Fn wfn 6481  wf 6482  cmpo 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932
This theorem is referenced by:  fnmpoi  8012  dmmpoga  8015  fnmpoovd  8027  fsplitfpar  8058  genpdm  10915  isofn  17700  brric  20407  mpocti  32672  f1od2  32677  cnre2csqima  33880  aks6d1c6lem3  42148  elrnmpoid  45209  smflimlem3  46758  smflimlem6  46761  invfn  49019  iinfssclem2  49044  imasubclem2  49094
  Copyright terms: Public domain W3C validator