MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmpo Structured version   Visualization version   GIF version

Theorem fnmpo 7996
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fnmpo (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem fnmpo
StepHypRef Expression
1 elex 3457 . . 3 (𝐶𝑉𝐶 ∈ V)
212ralimi 3102 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴𝑦𝐵 𝐶 ∈ V)
3 fmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43fmpo 7995 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹:(𝐴 × 𝐵)⟶V)
5 dffn2 6648 . . 3 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
64, 5bitr4i 278 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 ∈ V ↔ 𝐹 Fn (𝐴 × 𝐵))
72, 6sylib 218 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436   × cxp 5609   Fn wfn 6471  wf 6472  cmpo 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917
This theorem is referenced by:  fnmpoi  7997  dmmpoga  8000  fnmpoovd  8012  fsplitfpar  8043  genpdm  10888  isofn  17677  brric  20414  mpocti  32689  f1od2  32694  cnre2csqima  33916  aks6d1c6lem3  42205  elrnmpoid  45265  smflimlem3  46811  smflimlem6  46814  invfn  49062  iinfssclem2  49087  imasubclem2  49137
  Copyright terms: Public domain W3C validator