Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoass Structured version   Visualization version   GIF version

Theorem rngoass 36064
Description: Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoass ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))

Proof of Theorem rngoass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . . 6 𝐺 = (1st𝑅)
2 ringi.2 . . . . . 6 𝐻 = (2nd𝑅)
3 ringi.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3rngoi 36057 . . . . 5 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
54simprd 496 . . . 4 (𝑅 ∈ RingOps → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
65simpld 495 . . 3 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
7 simp1 1135 . . . . 5 ((((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
87ralimi 3087 . . . 4 (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
982ralimi 3088 . . 3 (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
106, 9syl 17 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
11 oveq1 7282 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
1211oveq1d 7290 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦)𝐻𝑧) = ((𝐴𝐻𝑦)𝐻𝑧))
13 oveq1 7282 . . . 4 (𝑥 = 𝐴 → (𝑥𝐻(𝑦𝐻𝑧)) = (𝐴𝐻(𝑦𝐻𝑧)))
1412, 13eqeq12d 2754 . . 3 (𝑥 = 𝐴 → (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ((𝐴𝐻𝑦)𝐻𝑧) = (𝐴𝐻(𝑦𝐻𝑧))))
15 oveq2 7283 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
1615oveq1d 7290 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦)𝐻𝑧) = ((𝐴𝐻𝐵)𝐻𝑧))
17 oveq1 7282 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝑧) = (𝐵𝐻𝑧))
1817oveq2d 7291 . . . 4 (𝑦 = 𝐵 → (𝐴𝐻(𝑦𝐻𝑧)) = (𝐴𝐻(𝐵𝐻𝑧)))
1916, 18eqeq12d 2754 . . 3 (𝑦 = 𝐵 → (((𝐴𝐻𝑦)𝐻𝑧) = (𝐴𝐻(𝑦𝐻𝑧)) ↔ ((𝐴𝐻𝐵)𝐻𝑧) = (𝐴𝐻(𝐵𝐻𝑧))))
20 oveq2 7283 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐻𝐵)𝐻𝑧) = ((𝐴𝐻𝐵)𝐻𝐶))
21 oveq2 7283 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐻𝑧) = (𝐵𝐻𝐶))
2221oveq2d 7291 . . . 4 (𝑧 = 𝐶 → (𝐴𝐻(𝐵𝐻𝑧)) = (𝐴𝐻(𝐵𝐻𝐶)))
2320, 22eqeq12d 2754 . . 3 (𝑧 = 𝐶 → (((𝐴𝐻𝐵)𝐻𝑧) = (𝐴𝐻(𝐵𝐻𝑧)) ↔ ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))))
2414, 19, 23rspc3v 3573 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))))
2510, 24mpan9 507 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   × cxp 5587  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  AbelOpcablo 28906  RingOpscrngo 36052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-rngo 36053
This theorem is referenced by:  rngomndo  36093  rngoneglmul  36101  rngonegrmul  36102  zerdivemp1x  36105  isdrngo2  36116  crngm23  36160  crngm4  36161  prnc  36225
  Copyright terms: Public domain W3C validator