MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrconngr Structured version   Visualization version   GIF version

Theorem frgrconngr 28006
Description: A friendship graph is connected, see remark 1 in [MertziosUnger] p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.)
Assertion
Ref Expression
frgrconngr (𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph)

Proof of Theorem frgrconngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
212pthfrgr 27996 . . 3 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝(𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2))
3 spthonpthon 27465 . . . . . 6 (𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
43adantr 481 . . . . 5 ((𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2) → 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
542eximi 1829 . . . 4 (∃𝑓𝑝(𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
652ralimi 3166 . . 3 (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝(𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
72, 6syl 17 . 2 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
81isconngr1 27902 . 2 (𝐺 ∈ FriendGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
97, 8mpbird 258 1 (𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wex 1773  wcel 2107  wral 3143  cdif 3937  {csn 4564   class class class wbr 5063  cfv 6354  (class class class)co 7150  2c2 11686  chash 13685  Vtxcvtx 26714  PathsOncpthson 27428  SPathsOncspthson 27429  ConnGraphcconngr 27898   FriendGraph cfrgr 27970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-fzo 13029  df-hash 13686  df-word 13857  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-edg 26766  df-uhgr 26776  df-upgr 26800  df-umgr 26801  df-uspgr 26868  df-usgr 26869  df-wlks 27314  df-wlkson 27315  df-trls 27407  df-trlson 27408  df-pths 27430  df-spths 27431  df-pthson 27432  df-spthson 27433  df-conngr 27899  df-frgr 27971
This theorem is referenced by:  vdgn0frgrv2  28007
  Copyright terms: Public domain W3C validator