| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrconngr | Structured version Visualization version GIF version | ||
| Description: A friendship graph is connected, see remark 1 in [MertziosUnger] p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| frgrconngr | ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | 2pthfrgr 30254 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝(𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2)) |
| 3 | spthonpthon 29722 | . . . . . 6 ⊢ (𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 → 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2) → 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 5 | 4 | 2eximi 1837 | . . . 4 ⊢ (∃𝑓∃𝑝(𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 6 | 5 | 2ralimi 3100 | . . 3 ⊢ (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝(𝑓(𝑘(SPathsOn‘𝐺)𝑛)𝑝 ∧ (♯‘𝑓) = 2) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 8 | 1 | isconngr1 30160 | . 2 ⊢ (𝐺 ∈ FriendGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 9 | 7, 8 | mpbird 257 | 1 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ∀wral 3045 ∖ cdif 3897 {csn 4574 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 2c2 12172 ♯chash 14229 Vtxcvtx 28967 PathsOncpthson 29683 SPathsOncspthson 29684 ConnGraphcconngr 30156 FriendGraph cfrgr 30228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-edg 29019 df-uhgr 29029 df-upgr 29053 df-umgr 29054 df-uspgr 29121 df-usgr 29122 df-wlks 29571 df-wlkson 29572 df-trls 29662 df-trlson 29663 df-pths 29685 df-spths 29686 df-pthson 29687 df-spthson 29688 df-conngr 30157 df-frgr 30229 |
| This theorem is referenced by: vdgn0frgrv2 30265 |
| Copyright terms: Public domain | W3C validator |