Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngodir Structured version   Visualization version   GIF version

Theorem rngodir 37885
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngodir ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))

Proof of Theorem rngodir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringi.2 . . . . 5 𝐻 = (2nd𝑅)
3 ringi.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3rngoi 37879 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
54simprd 495 . . 3 (𝑅 ∈ RingOps → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
65simpld 494 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
7 simp3 1138 . . . . 5 ((((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
87ralimi 3066 . . . 4 (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
982ralimi 3099 . . 3 (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
10 oveq1 7356 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1110oveq1d 7364 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝐴𝐺𝑦)𝐻𝑧))
12 oveq1 7356 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧))
1312oveq1d 7364 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)))
1411, 13eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) ↔ ((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧))))
15 oveq2 7357 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1615oveq1d 7364 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐺𝐵)𝐻𝑧))
17 oveq1 7356 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐻𝑧) = (𝐵𝐻𝑧))
1817oveq2d 7365 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)))
1916, 18eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)) ↔ ((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧))))
20 oveq2 7357 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐺𝐵)𝐻𝐶))
21 oveq2 7357 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝐻𝑧) = (𝐴𝐻𝐶))
22 oveq2 7357 . . . . . 6 (𝑧 = 𝐶 → (𝐵𝐻𝑧) = (𝐵𝐻𝐶))
2321, 22oveq12d 7367 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
2420, 23eqeq12d 2745 . . . 4 (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)) ↔ ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
2514, 19, 24rspc3v 3593 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
269, 25syl5 34 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
276, 26mpan9 506 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   × cxp 5617  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  AbelOpcablo 30488  RingOpscrngo 37874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-1st 7924  df-2nd 7925  df-rngo 37875
This theorem is referenced by:  rngo2  37887  rngolz  37902  rngonegmn1l  37921  rngosubdir  37926  prnc  38047
  Copyright terms: Public domain W3C validator