Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngodir Structured version   Visualization version   GIF version

Theorem rngodir 35054
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngodir ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))

Proof of Theorem rngodir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringi.2 . . . . 5 𝐻 = (2nd𝑅)
3 ringi.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3rngoi 35048 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
54simprd 496 . . 3 (𝑅 ∈ RingOps → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
65simpld 495 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
7 simp3 1132 . . . . 5 ((((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
87ralimi 3164 . . . 4 (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
982ralimi 3165 . . 3 (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
10 oveq1 7158 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1110oveq1d 7166 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝐴𝐺𝑦)𝐻𝑧))
12 oveq1 7158 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧))
1312oveq1d 7166 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)))
1411, 13eqeq12d 2841 . . . 4 (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) ↔ ((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧))))
15 oveq2 7159 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1615oveq1d 7166 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐺𝐵)𝐻𝑧))
17 oveq1 7158 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐻𝑧) = (𝐵𝐻𝑧))
1817oveq2d 7167 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)))
1916, 18eqeq12d 2841 . . . 4 (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)) ↔ ((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧))))
20 oveq2 7159 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐺𝐵)𝐻𝐶))
21 oveq2 7159 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝐻𝑧) = (𝐴𝐻𝐶))
22 oveq2 7159 . . . . . 6 (𝑧 = 𝐶 → (𝐵𝐻𝑧) = (𝐵𝐻𝐶))
2321, 22oveq12d 7169 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
2420, 23eqeq12d 2841 . . . 4 (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)) ↔ ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
2514, 19, 24rspc3v 3639 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
269, 25syl5 34 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
276, 26mpan9 507 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  wrex 3143   × cxp 5551  ran crn 5554  wf 6347  cfv 6351  (class class class)co 7151  1st c1st 7681  2nd c2nd 7682  AbelOpcablo 28238  RingOpscrngo 35043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fv 6359  df-ov 7154  df-1st 7683  df-2nd 7684  df-rngo 35044
This theorem is referenced by:  rngo2  35056  rngolz  35071  rngonegmn1l  35090  rngosubdir  35095  prnc  35216
  Copyright terms: Public domain W3C validator