Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngodir Structured version   Visualization version   GIF version

Theorem rngodir 37076
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngodir ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))

Proof of Theorem rngodir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringi.2 . . . . 5 𝐻 = (2nd𝑅)
3 ringi.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3rngoi 37070 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
54simprd 494 . . 3 (𝑅 ∈ RingOps → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
65simpld 493 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
7 simp3 1136 . . . . 5 ((((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
87ralimi 3081 . . . 4 (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
982ralimi 3121 . . 3 (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
10 oveq1 7418 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1110oveq1d 7426 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝐴𝐺𝑦)𝐻𝑧))
12 oveq1 7418 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧))
1312oveq1d 7426 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)))
1411, 13eqeq12d 2746 . . . 4 (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) ↔ ((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧))))
15 oveq2 7419 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1615oveq1d 7426 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐺𝐵)𝐻𝑧))
17 oveq1 7418 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐻𝑧) = (𝐵𝐻𝑧))
1817oveq2d 7427 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)))
1916, 18eqeq12d 2746 . . . 4 (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝑦𝐻𝑧)) ↔ ((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧))))
20 oveq2 7419 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐺𝐵)𝐻𝐶))
21 oveq2 7419 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝐻𝑧) = (𝐴𝐻𝐶))
22 oveq2 7419 . . . . . 6 (𝑧 = 𝐶 → (𝐵𝐻𝑧) = (𝐵𝐻𝐶))
2321, 22oveq12d 7429 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
2420, 23eqeq12d 2746 . . . 4 (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐻𝑧) = ((𝐴𝐻𝑧)𝐺(𝐵𝐻𝑧)) ↔ ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
2514, 19, 24rspc3v 3626 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
269, 25syl5 34 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))))
276, 26mpan9 505 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068   × cxp 5673  ran crn 5676  wf 6538  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  AbelOpcablo 30064  RingOpscrngo 37065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-1st 7977  df-2nd 7978  df-rngo 37066
This theorem is referenced by:  rngo2  37078  rngolz  37093  rngonegmn1l  37112  rngosubdir  37117  prnc  37238
  Copyright terms: Public domain W3C validator