MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeteq0 Structured version   Visualization version   GIF version

Theorem xmeteq0 24364
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmeteq0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem xmeteq0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6944 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 isxmet 24350 . . . . . 6 (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
43ibi 267 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
5 simpl 482 . . . . 5 ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
652ralimi 3121 . . . 4 (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
74, 6simpl2im 503 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
8 oveq1 7438 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦))
98eqeq1d 2737 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0))
10 eqeq1 2739 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
119, 10bibi12d 345 . . . 4 (𝑥 = 𝐴 → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦)))
12 oveq2 7439 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵))
1312eqeq1d 2737 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐵) = 0))
14 eqeq2 2747 . . . . 5 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1513, 14bibi12d 345 . . . 4 (𝑦 = 𝐵 → (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)))
1611, 15rspc2v 3633 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)))
177, 16syl5com 31 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)))
18173impib 1115 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148   × cxp 5687  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  *cxr 11292  cle 11294   +𝑒 cxad 13150  ∞Metcxmet 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-xr 11297  df-xmet 21375
This theorem is referenced by:  meteq0  24365  xmet0  24368  xmetgt0  24384  xmetres2  24387  prdsxmetlem  24394  imasf1oxmet  24401  xblss2  24428  xmseq0  24490  comet  24542
  Copyright terms: Public domain W3C validator