MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeteq0 Structured version   Visualization version   GIF version

Theorem xmeteq0 23691
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmeteq0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))

Proof of Theorem xmeteq0
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6879 . . . . . 6 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
2 isxmet 23677 . . . . . 6 (𝑋 ∈ dom ∞Met β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
43ibi 266 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))))
5 simpl 483 . . . . 5 ((((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
652ralimi 3126 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
74, 6simpl2im 504 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
8 oveq1 7364 . . . . . 6 (π‘₯ = 𝐴 β†’ (π‘₯𝐷𝑦) = (𝐴𝐷𝑦))
98eqeq1d 2738 . . . . 5 (π‘₯ = 𝐴 β†’ ((π‘₯𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0))
10 eqeq1 2740 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯ = 𝑦 ↔ 𝐴 = 𝑦))
119, 10bibi12d 345 . . . 4 (π‘₯ = 𝐴 β†’ (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦)))
12 oveq2 7365 . . . . . 6 (𝑦 = 𝐡 β†’ (𝐴𝐷𝑦) = (𝐴𝐷𝐡))
1312eqeq1d 2738 . . . . 5 (𝑦 = 𝐡 β†’ ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐡) = 0))
14 eqeq2 2748 . . . . 5 (𝑦 = 𝐡 β†’ (𝐴 = 𝑦 ↔ 𝐴 = 𝐡))
1513, 14bibi12d 345 . . . 4 (𝑦 = 𝐡 β†’ (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡)))
1611, 15rspc2v 3590 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡)))
177, 16syl5com 31 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡)))
18173impib 1116 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3064   class class class wbr 5105   Γ— cxp 5631  dom cdm 5633  βŸΆwf 6492  β€˜cfv 6496  (class class class)co 7357  0cc0 11051  β„*cxr 11188   ≀ cle 11190   +𝑒 cxad 13031  βˆžMetcxmet 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-xr 11193  df-xmet 20789
This theorem is referenced by:  meteq0  23692  xmet0  23695  xmetgt0  23711  xmetres2  23714  prdsxmetlem  23721  imasf1oxmet  23728  xblss2  23755  xmseq0  23817  comet  23869
  Copyright terms: Public domain W3C validator