MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeteq0 Structured version   Visualization version   GIF version

Theorem xmeteq0 24224
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmeteq0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem xmeteq0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6857 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 isxmet 24210 . . . . . 6 (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
43ibi 267 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
5 simpl 482 . . . . 5 ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
652ralimi 3099 . . . 4 (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
74, 6simpl2im 503 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
8 oveq1 7356 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦))
98eqeq1d 2731 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0))
10 eqeq1 2733 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
119, 10bibi12d 345 . . . 4 (𝑥 = 𝐴 → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦)))
12 oveq2 7357 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵))
1312eqeq1d 2731 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐵) = 0))
14 eqeq2 2741 . . . . 5 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1513, 14bibi12d 345 . . . 4 (𝑦 = 𝐵 → (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)))
1611, 15rspc2v 3588 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)))
177, 16syl5com 31 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)))
18173impib 1116 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092   × cxp 5617  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  0cc0 11009  *cxr 11148  cle 11150   +𝑒 cxad 13012  ∞Metcxmet 21246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-xr 11153  df-xmet 21254
This theorem is referenced by:  meteq0  24225  xmet0  24228  xmetgt0  24244  xmetres2  24247  prdsxmetlem  24254  imasf1oxmet  24261  xblss2  24288  xmseq0  24350  comet  24399
  Copyright terms: Public domain W3C validator