![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmeteq0 | Structured version Visualization version GIF version |
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmeteq0 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
2 | isxmet 24355 | . . . . . 6 ⊢ (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
4 | 3 | ibi 267 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
5 | simpl 482 | . . . . 5 ⊢ ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
6 | 5 | 2ralimi 3129 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
7 | 4, 6 | simpl2im 503 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
8 | oveq1 7455 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦)) | |
9 | 8 | eqeq1d 2742 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0)) |
10 | eqeq1 2744 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
11 | 9, 10 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦))) |
12 | oveq2 7456 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵)) | |
13 | 12 | eqeq1d 2742 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
14 | eqeq2 2752 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
15 | 13, 14 | bibi12d 345 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
16 | 11, 15 | rspc2v 3646 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
17 | 7, 16 | syl5com 31 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))) |
18 | 17 | 3impib 1116 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 × cxp 5698 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℝ*cxr 11323 ≤ cle 11325 +𝑒 cxad 13173 ∞Metcxmet 21372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-xr 11328 df-xmet 21380 |
This theorem is referenced by: meteq0 24370 xmet0 24373 xmetgt0 24389 xmetres2 24392 prdsxmetlem 24399 imasf1oxmet 24406 xblss2 24433 xmseq0 24495 comet 24547 |
Copyright terms: Public domain | W3C validator |