MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeteq0 Structured version   Visualization version   GIF version

Theorem xmeteq0 24165
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmeteq0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))

Proof of Theorem xmeteq0
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6928 . . . . . 6 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
2 isxmet 24151 . . . . . 6 (𝑋 ∈ dom ∞Met β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
43ibi 267 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))))
5 simpl 482 . . . . 5 ((((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
652ralimi 3122 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
74, 6simpl2im 503 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
8 oveq1 7419 . . . . . 6 (π‘₯ = 𝐴 β†’ (π‘₯𝐷𝑦) = (𝐴𝐷𝑦))
98eqeq1d 2733 . . . . 5 (π‘₯ = 𝐴 β†’ ((π‘₯𝐷𝑦) = 0 ↔ (𝐴𝐷𝑦) = 0))
10 eqeq1 2735 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯ = 𝑦 ↔ 𝐴 = 𝑦))
119, 10bibi12d 345 . . . 4 (π‘₯ = 𝐴 β†’ (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ↔ ((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦)))
12 oveq2 7420 . . . . . 6 (𝑦 = 𝐡 β†’ (𝐴𝐷𝑦) = (𝐴𝐷𝐡))
1312eqeq1d 2733 . . . . 5 (𝑦 = 𝐡 β†’ ((𝐴𝐷𝑦) = 0 ↔ (𝐴𝐷𝐡) = 0))
14 eqeq2 2743 . . . . 5 (𝑦 = 𝐡 β†’ (𝐴 = 𝑦 ↔ 𝐴 = 𝐡))
1513, 14bibi12d 345 . . . 4 (𝑦 = 𝐡 β†’ (((𝐴𝐷𝑦) = 0 ↔ 𝐴 = 𝑦) ↔ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡)))
1611, 15rspc2v 3622 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡)))
177, 16syl5com 31 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡)))
18173impib 1115 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ 𝐴 = 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   class class class wbr 5148   Γ— cxp 5674  dom cdm 5676  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  0cc0 11116  β„*cxr 11254   ≀ cle 11256   +𝑒 cxad 13097  βˆžMetcxmet 21219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-xr 11259  df-xmet 21227
This theorem is referenced by:  meteq0  24166  xmet0  24169  xmetgt0  24185  xmetres2  24188  prdsxmetlem  24195  imasf1oxmet  24202  xblss2  24229  xmseq0  24291  comet  24343
  Copyright terms: Public domain W3C validator