MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop1 Structured version   Visualization version   GIF version

Theorem ustuqtop1 24271
Description: Lemma for ustuqtop 24276, similar to ssnei2 23145. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop1 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑎,𝑏,𝑝,𝑁   𝑣,𝑎,𝑈,𝑏   𝑋,𝑎,𝑏
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop1
Dummy variables 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1l 1224 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑈 ∈ (UnifOn‘𝑋))
213anassrs 1360 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
3 simplr 768 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤𝑈)
4 ustssxp 24234 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
52, 3, 4syl2anc 583 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑋 × 𝑋))
6 simpl1r 1225 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑝𝑋)
763anassrs 1360 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝𝑋)
87snssd 4834 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {𝑝} ⊆ 𝑋)
9 simpl3 1193 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑏𝑋)
1093anassrs 1360 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏𝑋)
11 xpss12 5715 . . . . . . 7 (({𝑝} ⊆ 𝑋𝑏𝑋) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋))
128, 10, 11syl2anc 583 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋))
135, 12unssd 4215 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋))
14 ssun1 4201 . . . . . 6 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))
1514a1i 11 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)))
16 ustssel 24235 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) → (𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈))
1716imp 406 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) ∧ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)
182, 3, 13, 15, 17syl31anc 1373 . . . 4 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)
19 simpl2 1192 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ (𝑎 ∈ (𝑁𝑝) ∧ 𝑤𝑈𝑎 = (𝑤 “ {𝑝}))) → 𝑎𝑏)
20193anassrs 1360 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎𝑏)
21 ssequn1 4209 . . . . . . 7 (𝑎𝑏 ↔ (𝑎𝑏) = 𝑏)
2221biimpi 216 . . . . . 6 (𝑎𝑏 → (𝑎𝑏) = 𝑏)
23 id 22 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑝}) → 𝑎 = (𝑤 “ {𝑝}))
24 inidm 4248 . . . . . . . . . . 11 ({𝑝} ∩ {𝑝}) = {𝑝}
25 vex 3492 . . . . . . . . . . . 12 𝑝 ∈ V
2625snnz 4801 . . . . . . . . . . 11 {𝑝} ≠ ∅
2724, 26eqnetri 3017 . . . . . . . . . 10 ({𝑝} ∩ {𝑝}) ≠ ∅
28 xpima2 6215 . . . . . . . . . 10 (({𝑝} ∩ {𝑝}) ≠ ∅ → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏)
2927, 28mp1i 13 . . . . . . . . 9 (𝑎 = (𝑤 “ {𝑝}) → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏)
3029eqcomd 2746 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑝}) → 𝑏 = (({𝑝} × 𝑏) “ {𝑝}))
3123, 30uneq12d 4192 . . . . . . 7 (𝑎 = (𝑤 “ {𝑝}) → (𝑎𝑏) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝})))
32 imaundir 6182 . . . . . . 7 ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝}))
3331, 32eqtr4di 2798 . . . . . 6 (𝑎 = (𝑤 “ {𝑝}) → (𝑎𝑏) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
3422, 33sylan9req 2801 . . . . 5 ((𝑎𝑏𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
3520, 34sylancom 587 . . . 4 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
36 imaeq1 6084 . . . . 5 (𝑢 = (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑢 “ {𝑝}) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}))
3736rspceeqv 3658 . . . 4 (((𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
3818, 35, 37syl2anc 583 . . 3 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
39 utopustuq.1 . . . . . . 7 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
4039ustuqtoplem 24269 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
4140elvd 3494 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
4241biimpa 476 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
43423ad2antl1 1185 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
4438, 43r19.29a 3168 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
4539ustuqtoplem 24269 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
4645elvd 3494 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
47463ad2ant1 1133 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
4847adantr 480 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
4944, 48mpbird 257 1 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  ran crn 5701  cima 5703  cfv 6573  UnifOncust 24229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ust 24230
This theorem is referenced by:  ustuqtop4  24274  ustuqtop  24276  utopsnneiplem  24277
  Copyright terms: Public domain W3C validator