| Step | Hyp | Ref
| Expression |
| 1 | | simpl1l 1225 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 2 | 1 | 3anassrs 1361 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 3 | | simplr 768 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ∈ 𝑈) |
| 4 | | ustssxp 24148 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → 𝑤 ⊆ (𝑋 × 𝑋)) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑋 × 𝑋)) |
| 6 | | simpl1r 1226 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑝 ∈ 𝑋) |
| 7 | 6 | 3anassrs 1361 |
. . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 ∈ 𝑋) |
| 8 | 7 | snssd 4790 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {𝑝} ⊆ 𝑋) |
| 9 | | simpl3 1194 |
. . . . . . . 8
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑏 ⊆ 𝑋) |
| 10 | 9 | 3anassrs 1361 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 ⊆ 𝑋) |
| 11 | | xpss12 5674 |
. . . . . . 7
⊢ (({𝑝} ⊆ 𝑋 ∧ 𝑏 ⊆ 𝑋) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋)) |
| 12 | 8, 10, 11 | syl2anc 584 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋)) |
| 13 | 5, 12 | unssd 4172 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) |
| 14 | | ssun1 4158 |
. . . . . 6
⊢ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) |
| 15 | 14 | a1i 11 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) |
| 16 | | ustssel 24149 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) → (𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)) |
| 17 | 16 | imp 406 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) ∧ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈) |
| 18 | 2, 3, 13, 15, 17 | syl31anc 1375 |
. . . 4
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈) |
| 19 | | simpl2 1193 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑎 ⊆ 𝑏) |
| 20 | 19 | 3anassrs 1361 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 ⊆ 𝑏) |
| 21 | | ssequn1 4166 |
. . . . . . 7
⊢ (𝑎 ⊆ 𝑏 ↔ (𝑎 ∪ 𝑏) = 𝑏) |
| 22 | 21 | biimpi 216 |
. . . . . 6
⊢ (𝑎 ⊆ 𝑏 → (𝑎 ∪ 𝑏) = 𝑏) |
| 23 | | id 22 |
. . . . . . . 8
⊢ (𝑎 = (𝑤 “ {𝑝}) → 𝑎 = (𝑤 “ {𝑝})) |
| 24 | | inidm 4207 |
. . . . . . . . . . 11
⊢ ({𝑝} ∩ {𝑝}) = {𝑝} |
| 25 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑝 ∈ V |
| 26 | 25 | snnz 4757 |
. . . . . . . . . . 11
⊢ {𝑝} ≠ ∅ |
| 27 | 24, 26 | eqnetri 3003 |
. . . . . . . . . 10
⊢ ({𝑝} ∩ {𝑝}) ≠ ∅ |
| 28 | | xpima2 6178 |
. . . . . . . . . 10
⊢ (({𝑝} ∩ {𝑝}) ≠ ∅ → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏) |
| 29 | 27, 28 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑎 = (𝑤 “ {𝑝}) → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏) |
| 30 | 29 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝑎 = (𝑤 “ {𝑝}) → 𝑏 = (({𝑝} × 𝑏) “ {𝑝})) |
| 31 | 23, 30 | uneq12d 4149 |
. . . . . . 7
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∪ 𝑏) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝}))) |
| 32 | | imaundir 6144 |
. . . . . . 7
⊢ ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝})) |
| 33 | 31, 32 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∪ 𝑏) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
| 34 | 22, 33 | sylan9req 2792 |
. . . . 5
⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
| 35 | 20, 34 | sylancom 588 |
. . . 4
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
| 36 | | imaeq1 6047 |
. . . . 5
⊢ (𝑢 = (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑢 “ {𝑝}) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
| 37 | 36 | rspceeqv 3629 |
. . . 4
⊢ (((𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈 ∧ 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
| 38 | 18, 35, 37 | syl2anc 584 |
. . 3
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
| 39 | | utopustuq.1 |
. . . . . . 7
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 40 | 39 | ustuqtoplem 24183 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
| 41 | 40 | elvd 3470 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
| 42 | 41 | biimpa 476 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
| 43 | 42 | 3ad2antl1 1186 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
| 44 | 38, 43 | r19.29a 3149 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
| 45 | 39 | ustuqtoplem 24183 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
| 46 | 45 | elvd 3470 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
| 47 | 46 | 3ad2ant1 1133 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
| 48 | 47 | adantr 480 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
| 49 | 44, 48 | mpbird 257 |
1
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |