| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1l 1224 | . . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑈 ∈ (UnifOn‘𝑋)) | 
| 2 | 1 | 3anassrs 1360 | . . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) | 
| 3 |  | simplr 768 | . . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ∈ 𝑈) | 
| 4 |  | ustssxp 24214 | . . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → 𝑤 ⊆ (𝑋 × 𝑋)) | 
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑋 × 𝑋)) | 
| 6 |  | simpl1r 1225 | . . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑝 ∈ 𝑋) | 
| 7 | 6 | 3anassrs 1360 | . . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 ∈ 𝑋) | 
| 8 | 7 | snssd 4808 | . . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {𝑝} ⊆ 𝑋) | 
| 9 |  | simpl3 1193 | . . . . . . . 8
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑏 ⊆ 𝑋) | 
| 10 | 9 | 3anassrs 1360 | . . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 ⊆ 𝑋) | 
| 11 |  | xpss12 5699 | . . . . . . 7
⊢ (({𝑝} ⊆ 𝑋 ∧ 𝑏 ⊆ 𝑋) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋)) | 
| 12 | 8, 10, 11 | syl2anc 584 | . . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋)) | 
| 13 | 5, 12 | unssd 4191 | . . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) | 
| 14 |  | ssun1 4177 | . . . . . 6
⊢ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) | 
| 15 | 14 | a1i 11 | . . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) | 
| 16 |  | ustssel 24215 | . . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) → (𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)) | 
| 17 | 16 | imp 406 | . . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) ∧ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈) | 
| 18 | 2, 3, 13, 15, 17 | syl31anc 1374 | . . . 4
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈) | 
| 19 |  | simpl2 1192 | . . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑎 ⊆ 𝑏) | 
| 20 | 19 | 3anassrs 1360 | . . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 ⊆ 𝑏) | 
| 21 |  | ssequn1 4185 | . . . . . . 7
⊢ (𝑎 ⊆ 𝑏 ↔ (𝑎 ∪ 𝑏) = 𝑏) | 
| 22 | 21 | biimpi 216 | . . . . . 6
⊢ (𝑎 ⊆ 𝑏 → (𝑎 ∪ 𝑏) = 𝑏) | 
| 23 |  | id 22 | . . . . . . . 8
⊢ (𝑎 = (𝑤 “ {𝑝}) → 𝑎 = (𝑤 “ {𝑝})) | 
| 24 |  | inidm 4226 | . . . . . . . . . . 11
⊢ ({𝑝} ∩ {𝑝}) = {𝑝} | 
| 25 |  | vex 3483 | . . . . . . . . . . . 12
⊢ 𝑝 ∈ V | 
| 26 | 25 | snnz 4775 | . . . . . . . . . . 11
⊢ {𝑝} ≠ ∅ | 
| 27 | 24, 26 | eqnetri 3010 | . . . . . . . . . 10
⊢ ({𝑝} ∩ {𝑝}) ≠ ∅ | 
| 28 |  | xpima2 6203 | . . . . . . . . . 10
⊢ (({𝑝} ∩ {𝑝}) ≠ ∅ → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏) | 
| 29 | 27, 28 | mp1i 13 | . . . . . . . . 9
⊢ (𝑎 = (𝑤 “ {𝑝}) → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏) | 
| 30 | 29 | eqcomd 2742 | . . . . . . . 8
⊢ (𝑎 = (𝑤 “ {𝑝}) → 𝑏 = (({𝑝} × 𝑏) “ {𝑝})) | 
| 31 | 23, 30 | uneq12d 4168 | . . . . . . 7
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∪ 𝑏) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝}))) | 
| 32 |  | imaundir 6169 | . . . . . . 7
⊢ ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝})) | 
| 33 | 31, 32 | eqtr4di 2794 | . . . . . 6
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∪ 𝑏) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) | 
| 34 | 22, 33 | sylan9req 2797 | . . . . 5
⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) | 
| 35 | 20, 34 | sylancom 588 | . . . 4
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) | 
| 36 |  | imaeq1 6072 | . . . . 5
⊢ (𝑢 = (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑢 “ {𝑝}) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) | 
| 37 | 36 | rspceeqv 3644 | . . . 4
⊢ (((𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈 ∧ 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) | 
| 38 | 18, 35, 37 | syl2anc 584 | . . 3
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) | 
| 39 |  | utopustuq.1 | . . . . . . 7
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | 
| 40 | 39 | ustuqtoplem 24249 | . . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) | 
| 41 | 40 | elvd 3485 | . . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) | 
| 42 | 41 | biimpa 476 | . . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) | 
| 43 | 42 | 3ad2antl1 1185 | . . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) | 
| 44 | 38, 43 | r19.29a 3161 | . 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) | 
| 45 | 39 | ustuqtoplem 24249 | . . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) | 
| 46 | 45 | elvd 3485 | . . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) | 
| 47 | 46 | 3ad2ant1 1133 | . . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) | 
| 48 | 47 | adantr 480 | . 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) | 
| 49 | 44, 48 | mpbird 257 | 1
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |