Step | Hyp | Ref
| Expression |
1 | | simpl1l 1226 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑈 ∈ (UnifOn‘𝑋)) |
2 | 1 | 3anassrs 1362 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) |
3 | | simplr 769 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ∈ 𝑈) |
4 | | ustssxp 23102 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → 𝑤 ⊆ (𝑋 × 𝑋)) |
5 | 2, 3, 4 | syl2anc 587 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑋 × 𝑋)) |
6 | | simpl1r 1227 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑝 ∈ 𝑋) |
7 | 6 | 3anassrs 1362 |
. . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 ∈ 𝑋) |
8 | 7 | snssd 4722 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {𝑝} ⊆ 𝑋) |
9 | | simpl3 1195 |
. . . . . . . 8
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑏 ⊆ 𝑋) |
10 | 9 | 3anassrs 1362 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 ⊆ 𝑋) |
11 | | xpss12 5566 |
. . . . . . 7
⊢ (({𝑝} ⊆ 𝑋 ∧ 𝑏 ⊆ 𝑋) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋)) |
12 | 8, 10, 11 | syl2anc 587 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ({𝑝} × 𝑏) ⊆ (𝑋 × 𝑋)) |
13 | 5, 12 | unssd 4100 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) |
14 | | ssun1 4086 |
. . . . . 6
⊢ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) |
15 | 14 | a1i 11 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) |
16 | | ustssel 23103 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) → (𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈)) |
17 | 16 | imp 410 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ (𝑤 ∪ ({𝑝} × 𝑏)) ⊆ (𝑋 × 𝑋)) ∧ 𝑤 ⊆ (𝑤 ∪ ({𝑝} × 𝑏))) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈) |
18 | 2, 3, 13, 15, 17 | syl31anc 1375 |
. . . 4
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈) |
19 | | simpl2 1194 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑎 ∈ (𝑁‘𝑝) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = (𝑤 “ {𝑝}))) → 𝑎 ⊆ 𝑏) |
20 | 19 | 3anassrs 1362 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 ⊆ 𝑏) |
21 | | ssequn1 4094 |
. . . . . . 7
⊢ (𝑎 ⊆ 𝑏 ↔ (𝑎 ∪ 𝑏) = 𝑏) |
22 | 21 | biimpi 219 |
. . . . . 6
⊢ (𝑎 ⊆ 𝑏 → (𝑎 ∪ 𝑏) = 𝑏) |
23 | | id 22 |
. . . . . . . 8
⊢ (𝑎 = (𝑤 “ {𝑝}) → 𝑎 = (𝑤 “ {𝑝})) |
24 | | inidm 4133 |
. . . . . . . . . . 11
⊢ ({𝑝} ∩ {𝑝}) = {𝑝} |
25 | | vex 3412 |
. . . . . . . . . . . 12
⊢ 𝑝 ∈ V |
26 | 25 | snnz 4692 |
. . . . . . . . . . 11
⊢ {𝑝} ≠ ∅ |
27 | 24, 26 | eqnetri 3011 |
. . . . . . . . . 10
⊢ ({𝑝} ∩ {𝑝}) ≠ ∅ |
28 | | xpima2 6047 |
. . . . . . . . . 10
⊢ (({𝑝} ∩ {𝑝}) ≠ ∅ → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏) |
29 | 27, 28 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑎 = (𝑤 “ {𝑝}) → (({𝑝} × 𝑏) “ {𝑝}) = 𝑏) |
30 | 29 | eqcomd 2743 |
. . . . . . . 8
⊢ (𝑎 = (𝑤 “ {𝑝}) → 𝑏 = (({𝑝} × 𝑏) “ {𝑝})) |
31 | 23, 30 | uneq12d 4078 |
. . . . . . 7
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∪ 𝑏) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝}))) |
32 | | imaundir 6014 |
. . . . . . 7
⊢ ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝}) = ((𝑤 “ {𝑝}) ∪ (({𝑝} × 𝑏) “ {𝑝})) |
33 | 31, 32 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∪ 𝑏) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
34 | 22, 33 | sylan9req 2799 |
. . . . 5
⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
35 | 20, 34 | sylancom 591 |
. . . 4
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
36 | | imaeq1 5924 |
. . . . 5
⊢ (𝑢 = (𝑤 ∪ ({𝑝} × 𝑏)) → (𝑢 “ {𝑝}) = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) |
37 | 36 | rspceeqv 3552 |
. . . 4
⊢ (((𝑤 ∪ ({𝑝} × 𝑏)) ∈ 𝑈 ∧ 𝑏 = ((𝑤 ∪ ({𝑝} × 𝑏)) “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
38 | 18, 35, 37 | syl2anc 587 |
. . 3
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
39 | | utopustuq.1 |
. . . . . . 7
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
40 | 39 | ustuqtoplem 23137 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
41 | 40 | elvd 3415 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
42 | 41 | biimpa 480 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
43 | 42 | 3ad2antl1 1187 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
44 | 38, 43 | r19.29a 3208 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
45 | 39 | ustuqtoplem 23137 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
46 | 45 | elvd 3415 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
47 | 46 | 3ad2ant1 1135 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
48 | 47 | adantr 484 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
49 | 44, 48 | mpbird 260 |
1
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |