MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetpsmet Structured version   Visualization version   GIF version

Theorem xmetpsmet 23501
Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
xmetpsmet (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))

Proof of Theorem xmetpsmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 23482 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 xmet0 23495 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
3 3anrot 1099 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) ↔ (𝑥𝑋𝑦𝑋𝑧𝑋))
4 xmettri2 23493 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
53, 4sylan2br 595 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
653anassrs 1359 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
76ralrimiva 3103 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
87ralrimiva 3103 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
92, 8jca 512 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
109ralrimiva 3103 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11 elfvex 6807 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V)
12 ispsmet 23457 . . 3 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
1311, 12syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
141, 10, 13mpbir2and 710 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  *cxr 11008  cle 11010   +𝑒 cxad 12846  PsMetcpsmet 20581  ∞Metcxmet 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-xr 11013  df-psmet 20589  df-xmet 20590
This theorem is referenced by:  blfval  23537  xmetutop  23724  xmsusp  23725  cfilucfil3  24484  cmetcusp  24518  cnflduss  24520  reust  24545  qqhucn  31942  sitmcl  32318  heicant  35812  metpsmet  42641  ioorrnopnlem  43845
  Copyright terms: Public domain W3C validator