MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetpsmet Structured version   Visualization version   GIF version

Theorem xmetpsmet 24236
Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
xmetpsmet (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))

Proof of Theorem xmetpsmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 24217 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 xmet0 24230 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
3 3anrot 1099 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) ↔ (𝑥𝑋𝑦𝑋𝑧𝑋))
4 xmettri2 24228 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧𝑋𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
53, 4sylan2br 595 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
653anassrs 1361 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
76ralrimiva 3125 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
87ralrimiva 3125 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
92, 8jca 511 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
109ralrimiva 3125 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
11 elfvex 6896 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V)
12 ispsmet 24192 . . 3 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
1311, 12syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
141, 10, 13mpbir2and 713 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  *cxr 11207  cle 11209   +𝑒 cxad 13070  PsMetcpsmet 21248  ∞Metcxmet 21249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-xr 11212  df-psmet 21256  df-xmet 21257
This theorem is referenced by:  blfval  24272  xmetutop  24456  xmsusp  24457  cfilucfil3  25220  cmetcusp  25254  cnflduss  25256  reust  25281  qqhucn  33982  sitmcl  34342  heicant  37649  metpsmet  45085  ioorrnopnlem  46302
  Copyright terms: Public domain W3C validator