MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitx Structured version   Visualization version   GIF version

Theorem neitx 22958
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x 𝑋 = 𝐽
neitx.y 𝑌 = 𝐾
Assertion
Ref Expression
neitx (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))

Proof of Theorem neitx
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6 𝑋 = 𝐽
21neii1 22457 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐴𝑋)
32ad2ant2r 745 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐴𝑋)
4 neitx.y . . . . . 6 𝑌 = 𝐾
54neii1 22457 . . . . 5 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐵𝑌)
65ad2ant2l 744 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐵𝑌)
7 xpss12 5648 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
83, 6, 7syl2anc 584 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
91, 4txuni 22943 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
109adantr 481 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
118, 10sseqtrd 3984 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾))
12 simp-5l 783 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
13 simp-4r 782 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐽)
14 simplr 767 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐾)
15 txopn 22953 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑎𝐽𝑏𝐾)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
1612, 13, 14, 15syl12anc 835 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
17 simpr1l 1230 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝐶𝑎)
18173anassrs 1360 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐶𝑎)
19 simprl 769 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐷𝑏)
20 xpss12 5648 . . . . . 6 ((𝐶𝑎𝐷𝑏) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
2118, 19, 20syl2anc 584 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
22 simpr1r 1231 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝑎𝐴)
23223anassrs 1360 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐴)
24 simprr 771 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐵)
25 xpss12 5648 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
2623, 24, 25syl2anc 584 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
27 sseq2 3970 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → ((𝐶 × 𝐷) ⊆ 𝑐 ↔ (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)))
28 sseq1 3969 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → (𝑐 ⊆ (𝐴 × 𝐵) ↔ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)))
2927, 28anbi12d 631 . . . . . 6 (𝑐 = (𝑎 × 𝑏) → (((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)) ↔ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))))
3029rspcev 3581 . . . . 5 (((𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾) ∧ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
3116, 21, 26, 30syl12anc 835 . . . 4 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
32 neii2 22459 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3332ad2ant2l 744 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3433ad2antrr 724 . . . 4 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3531, 34r19.29a 3159 . . 3 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
36 neii2 22459 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3736ad2ant2r 745 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3835, 37r19.29a 3159 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
39 txtop 22920 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4039adantr 481 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐽 ×t 𝐾) ∈ Top)
411neiss2 22452 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐶𝑋)
4241ad2ant2r 745 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐶𝑋)
434neiss2 22452 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐷𝑌)
4443ad2ant2l 744 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐷𝑌)
45 xpss12 5648 . . . . 5 ((𝐶𝑋𝐷𝑌) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4642, 44, 45syl2anc 584 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4746, 10sseqtrd 3984 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾))
48 eqid 2736 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
4948isnei 22454 . . 3 (((𝐽 ×t 𝐾) ∈ Top ∧ (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾)) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5040, 47, 49syl2anc 584 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5111, 38, 50mpbir2and 711 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  wss 3910   cuni 4865   × cxp 5631  cfv 6496  (class class class)co 7357  Topctop 22242  neicnei 22448   ×t ctx 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-nei 22449  df-tx 22913
This theorem is referenced by:  utop2nei  23602  utop3cls  23603
  Copyright terms: Public domain W3C validator