Step | Hyp | Ref
| Expression |
1 | | utopustuq.1 |
. . . . 5
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
2 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈) → 𝑝 = 𝑞) |
3 | 2 | sneqd 4573 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈) → {𝑝} = {𝑞}) |
4 | 3 | imaeq2d 5969 |
. . . . . . . 8
⊢ ((𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑞})) |
5 | 4 | mpteq2dva 5174 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
6 | 5 | rneqd 5847 |
. . . . . 6
⊢ (𝑝 = 𝑞 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
7 | 6 | cbvmptv 5187 |
. . . . 5
⊢ (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) = (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
8 | 1, 7 | eqtri 2766 |
. . . 4
⊢ 𝑁 = (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) |
9 | | simpr2 1194 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → 𝑞 = 𝑃) |
10 | 9 | sneqd 4573 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → {𝑞} = {𝑃}) |
11 | 10 | imaeq2d 5969 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃})) |
12 | 11 | 3anassrs 1359 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑞 = 𝑃) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃})) |
13 | 12 | mpteq2dva 5174 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑞 = 𝑃) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
14 | 13 | rneqd 5847 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑞 = 𝑃) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
15 | | simpr 485 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
16 | | mptexg 7097 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
17 | | rnexg 7751 |
. . . . . 6
⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
19 | 18 | adantr 481 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
20 | 8, 14, 15, 19 | fvmptd2 6883 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
21 | 20 | eleq2d 2824 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑁‘𝑃) ↔ 𝐴 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})))) |
22 | | imaeq1 5964 |
. . . 4
⊢ (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃})) |
23 | 22 | cbvmptv 5187 |
. . 3
⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) = (𝑤 ∈ 𝑈 ↦ (𝑤 “ {𝑃})) |
24 | 23 | elrnmpt 5865 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑤 ∈ 𝑈 𝐴 = (𝑤 “ {𝑃}))) |
25 | 21, 24 | sylan9bb 510 |
1
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑁‘𝑃) ↔ ∃𝑤 ∈ 𝑈 𝐴 = (𝑤 “ {𝑃}))) |