MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtoplem Structured version   Visualization version   GIF version

Theorem ustuqtoplem 23401
Description: Lemma for ustuqtop 23408. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtoplem (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑉) → (𝐴 ∈ (𝑁𝑃) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
Distinct variable groups:   𝑤,𝐴   𝑤,𝑣,𝑃   𝑣,𝑝,𝑤,𝑈   𝑋,𝑝,𝑣
Allowed substitution hints:   𝐴(𝑣,𝑝)   𝑃(𝑝)   𝑁(𝑤,𝑣,𝑝)   𝑉(𝑤,𝑣,𝑝)   𝑋(𝑤)

Proof of Theorem ustuqtoplem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 utopustuq.1 . . . . 5 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
2 simpl 483 . . . . . . . . . 10 ((𝑝 = 𝑞𝑣𝑈) → 𝑝 = 𝑞)
32sneqd 4573 . . . . . . . . 9 ((𝑝 = 𝑞𝑣𝑈) → {𝑝} = {𝑞})
43imaeq2d 5962 . . . . . . . 8 ((𝑝 = 𝑞𝑣𝑈) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑞}))
54mpteq2dva 5173 . . . . . . 7 (𝑝 = 𝑞 → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
65rneqd 5840 . . . . . 6 (𝑝 = 𝑞 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
76cbvmptv 5186 . . . . 5 (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝}))) = (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
81, 7eqtri 2766 . . . 4 𝑁 = (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))
9 simpr2 1194 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃𝑋𝑞 = 𝑃𝑣𝑈)) → 𝑞 = 𝑃)
109sneqd 4573 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃𝑋𝑞 = 𝑃𝑣𝑈)) → {𝑞} = {𝑃})
1110imaeq2d 5962 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑃𝑋𝑞 = 𝑃𝑣𝑈)) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃}))
12113anassrs 1359 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑞 = 𝑃) ∧ 𝑣𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑃}))
1312mpteq2dva 5173 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑞 = 𝑃) → (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
1413rneqd 5840 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑞 = 𝑃) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
15 simpr 485 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → 𝑃𝑋)
16 mptexg 7089 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
17 rnexg 7741 . . . . . 6 ((𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
1816, 17syl 17 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
1918adantr 481 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
208, 14, 15, 19fvmptd2 6875 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑃) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
2120eleq2d 2824 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑁𝑃) ↔ 𝐴 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
22 imaeq1 5957 . . . 4 (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃}))
2322cbvmptv 5186 . . 3 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑤𝑈 ↦ (𝑤 “ {𝑃}))
2423elrnmpt 5858 . 2 (𝐴𝑉 → (𝐴 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
2521, 24sylan9bb 510 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑉) → (𝐴 ∈ (𝑁𝑃) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3429  {csn 4561  cmpt 5156  ran crn 5585  cima 5587  cfv 6426  UnifOncust 23361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434
This theorem is referenced by:  ustuqtop1  23403  ustuqtop2  23404  ustuqtop3  23405  ustuqtop4  23406  ustuqtop5  23407  utopsnneiplem  23409
  Copyright terms: Public domain W3C validator