Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsply0 Structured version   Visualization version   GIF version

Theorem signsply0 34535
Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient 𝐴 and 𝐵 are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsply0.a 𝐴 = (𝐶‘0)
signsply0.1 (𝜑𝐹 ∈ (Poly‘ℝ))
signsply0.2 (𝜑𝐹 ≠ 0𝑝)
signsply0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
signsply0 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐹   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem signsply0
Dummy variables 𝑒 𝑑 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑 ∈ ℝ+)
2 simpr 484 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
3 rpxr 12937 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
43xrleidd 13088 . . . . . . 7 (𝑑 ∈ ℝ+𝑑𝑑)
54ad2antlr 727 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑𝑑)
6 id 22 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
7 simpr 484 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → 𝑓 = 𝑑)
87breq2d 5114 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑑𝑓𝑑𝑑))
97fveq2d 6844 . . . . . . . . . . 11 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝐹𝑓) = (𝐹𝑑))
107oveq1d 7384 . . . . . . . . . . 11 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑓𝐷) = (𝑑𝐷))
119, 10oveq12d 7387 . . . . . . . . . 10 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝐹𝑓) / (𝑓𝐷)) = ((𝐹𝑑) / (𝑑𝐷)))
1211fvoveq1d 7391 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) = (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)))
1312breq1d 5112 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵))
148, 13imbi12d 344 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
156, 14rspcdv 3577 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
161, 2, 5, 15syl3c 66 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)
17 signsply0.1 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Poly‘ℝ))
1817ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
19 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 12971 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2118, 20plyrecld 34533 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
22 signsply0.d . . . . . . . . . . . . 13 𝐷 = (deg‘𝐹)
23 dgrcl 26171 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2417, 23syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
2522, 24eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
2625ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
2720, 26reexpcld 14104 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
2819rpcnd 12973 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
2919rpne0d 12976 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
3025nn0zd 12531 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℤ)
3130ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
3228, 29, 31expne0d 14093 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
3321, 27, 32redivcld 11986 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
34 signsply0.b . . . . . . . . . . . 12 𝐵 = (𝐶𝐷)
35 0re 11152 . . . . . . . . . . . . . 14 0 ∈ ℝ
36 signsply0.c . . . . . . . . . . . . . . 15 𝐶 = (coeff‘𝐹)
3736coef2 26169 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → 𝐶:ℕ0⟶ℝ)
3835, 37mpan2 691 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℝ)
3938ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → (𝐶𝐷) ∈ ℝ)
4034, 39eqeltrid 2832 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → 𝐵 ∈ ℝ)
4117, 25, 40syl2anc 584 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
4241ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
4342renegcld 11581 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → -𝐵 ∈ ℝ)
4433, 42, 43absdifltd 15378 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵 ↔ ((𝐵 − -𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))))
4544simplbda 499 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))
4641recnd 11178 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4746ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
4847negidd 11499 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵 + -𝐵) = 0)
4948adantr 480 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐵 + -𝐵) = 0)
5045, 49breqtrd 5128 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < 0)
5119, 31rpexpcld 14188 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
5221, 51ge0divd 13009 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 ≤ (𝐹𝑑) ↔ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5352notbid 318 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (¬ 0 ≤ (𝐹𝑑) ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
54 0red 11153 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 0 ∈ ℝ)
5521, 54ltnled 11297 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ¬ 0 ≤ (𝐹𝑑)))
5633, 54ltnled 11297 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (((𝐹𝑑) / (𝑑𝐷)) < 0 ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5753, 55, 563bitr4d 311 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
5857adantr 480 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
5950, 58mpbird 257 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐹𝑑) < 0)
6016, 59syldan 591 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (𝐹𝑑) < 0)
61 0red 11153 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 ∈ ℝ)
62 simplr 768 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ+)
6362rpred 12971 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ)
6462rpgt0d 12974 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < 𝑑)
65 iccssre 13366 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (0[,]𝑑) ⊆ ℝ)
6635, 63, 65sylancr 587 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℝ)
67 ax-resscn 11101 . . . . . . 7 ℝ ⊆ ℂ
6866, 67sstrdi 3956 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℂ)
69 plycn 26199 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐹 ∈ (ℂ–cn→ℂ))
7017, 69syl 17 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
7170ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐹 ∈ (ℂ–cn→ℂ))
7217ad4antr 732 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
7366sselda 3943 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
7472, 73plyrecld 34533 . . . . . 6 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
75 simpr 484 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹𝑑) < 0)
76 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝜑)
7776, 41syl 17 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 ∈ ℝ)
78 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ -𝐵 ∈ ℝ+) → -𝐵 ∈ ℝ+)
7978ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → -𝐵 ∈ ℝ+)
80 negelrp 12962 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
8180biimpa 476 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℝ+) → 𝐵 < 0)
8277, 79, 81syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 < 0)
83 signsply0.a . . . . . . . . . . . 12 𝐴 = (𝐶‘0)
8417, 35, 37sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐶:ℕ0⟶ℝ)
85 0nn0 12433 . . . . . . . . . . . . . 14 0 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
8784, 86ffvelcdmd 7039 . . . . . . . . . . . 12 (𝜑 → (𝐶‘0) ∈ ℝ)
8883, 87eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
89 signsply0.3 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) < 0)
9088, 41, 89mul2lt0rlt0 13031 . . . . . . . . . 10 ((𝜑𝐵 < 0) → 0 < 𝐴)
9190, 83breqtrdi 5143 . . . . . . . . 9 ((𝜑𝐵 < 0) → 0 < (𝐶‘0))
9276, 82, 91syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐶‘0))
9336coefv0 26186 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℝ) → (𝐹‘0) = (𝐶‘0))
9417, 93syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = (𝐶‘0))
9594ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹‘0) = (𝐶‘0))
9692, 95breqtrrd 5130 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐹‘0))
9775, 96jca 511 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ((𝐹𝑑) < 0 ∧ 0 < (𝐹‘0)))
9861, 63, 61, 64, 68, 71, 74, 97ivth2 25389 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
99 0le0 12263 . . . . . . . 8 0 ≤ 0
100 pnfge 13066 . . . . . . . . 9 (𝑑 ∈ ℝ*𝑑 ≤ +∞)
1013, 100syl 17 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ≤ +∞)
102 0xr 11197 . . . . . . . . 9 0 ∈ ℝ*
103 pnfxr 11204 . . . . . . . . 9 +∞ ∈ ℝ*
104 ioossioo 13378 . . . . . . . . 9 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ +∞)) → (0(,)𝑑) ⊆ (0(,)+∞))
105102, 103, 104mpanl12 702 . . . . . . . 8 ((0 ≤ 0 ∧ 𝑑 ≤ +∞) → (0(,)𝑑) ⊆ (0(,)+∞))
10699, 101, 105sylancr 587 . . . . . . 7 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ (0(,)+∞))
107 ioorp 13362 . . . . . . 7 (0(,)+∞) = ℝ+
108106, 107sseqtrdi 3984 . . . . . 6 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ ℝ+)
109 ssrexv 4013 . . . . . 6 ((0(,)𝑑) ⊆ ℝ+ → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
11062, 108, 1093syl 18 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
11198, 110mpd 15 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
11260, 111syldan 591 . . 3 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
113 plyf 26136 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
11417, 113syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
115114ffnd 6671 . . . . . . . . 9 (𝜑𝐹 Fn ℂ)
116 ovex 7402 . . . . . . . . . . 11 (𝑥𝐷) ∈ V
117116rgenw 3048 . . . . . . . . . 10 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
118 eqid 2729 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
119118fnmpt 6640 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
120117, 119mp1i 13 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
121 cnex 11125 . . . . . . . . . 10 ℂ ∈ V
122121a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
123 rpssre 12935 . . . . . . . . . . . 12 + ⊆ ℝ
124123, 67sstri 3953 . . . . . . . . . . 11 + ⊆ ℂ
125121, 124ssexi 5272 . . . . . . . . . 10 + ∈ V
126125a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ∈ V)
127 sseqin2 4182 . . . . . . . . . 10 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
128124, 127mpbi 230 . . . . . . . . 9 (ℂ ∩ ℝ+) = ℝ+
129 eqidd 2730 . . . . . . . . 9 ((𝜑𝑓 ∈ ℂ) → (𝐹𝑓) = (𝐹𝑓))
130 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)))
131 simpr 484 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
132131oveq1d 7384 . . . . . . . . . 10 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → (𝑥𝐷) = (𝑓𝐷))
133 simpr 484 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℝ+)
134 ovexd 7404 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ V)
135130, 132, 133, 134fvmptd 6957 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝑥 ∈ ℝ+ ↦ (𝑥𝐷))‘𝑓) = (𝑓𝐷))
136115, 120, 122, 126, 128, 129, 135offval 7642 . . . . . . . 8 (𝜑 → (𝐹f / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) = (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))))
137 oveq1 7376 . . . . . . . . . . 11 (𝑥 = 𝑓 → (𝑥𝐷) = (𝑓𝐷))
138137cbvmptv 5206 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑓 ∈ ℝ+ ↦ (𝑓𝐷))
13922, 36, 34, 138signsplypnf 34534 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
14017, 139syl 17 . . . . . . . 8 (𝜑 → (𝐹f / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
141136, 140eqbrtrrd 5126 . . . . . . 7 (𝜑 → (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵)
142114adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐹:ℂ⟶ℂ)
143133rpcnd 12973 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℂ)
144142, 143ffvelcdmd 7039 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝐹𝑓) ∈ ℂ)
14525adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℕ0)
146143, 145expcld 14087 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ ℂ)
147133rpne0d 12976 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ≠ 0)
14830adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℤ)
149143, 147, 148expne0d 14093 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ≠ 0)
150144, 146, 149divcld 11934 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
151150ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ ℝ+ ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
152123a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
153 1red 11151 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
154151, 152, 46, 153rlim3 15440 . . . . . . 7 (𝜑 → ((𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵 ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
155141, 154mpbid 232 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
156 0lt1 11676 . . . . . . . . . 10 0 < 1
157 pnfge 13066 . . . . . . . . . . 11 (+∞ ∈ ℝ* → +∞ ≤ +∞)
158103, 157ax-mp 5 . . . . . . . . . 10 +∞ ≤ +∞
159 icossioo 13377 . . . . . . . . . 10 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 1 ∧ +∞ ≤ +∞)) → (1[,)+∞) ⊆ (0(,)+∞))
160102, 103, 156, 158, 159mp4an 693 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
161160, 107sseqtri 3992 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
162 ssrexv 4013 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
163161, 162ax-mp 5 . . . . . . 7 (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
164163ralimi 3066 . . . . . 6 (∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
165155, 164syl 17 . . . . 5 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
166165adantr 480 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
167 simpr 484 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → 𝑒 = -𝐵)
168167breq2d 5114 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
169168imbi2d 340 . . . . . 6 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
170169rexralbidv 3201 . . . . 5 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
17178, 170rspcdv 3577 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
172166, 171mpd 15 . . 3 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
173112, 172r19.29a 3141 . 2 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
174 simplr 768 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑 ∈ ℝ+)
175 simpr 484 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
1764ad2antlr 727 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑𝑑)
17712breq1d 5112 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵))
1788, 177imbi12d 344 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
1796, 178rspcdv 3577 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
180174, 175, 176, 179syl3c 66 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)
18146ad2antrr 726 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
182181subidd 11497 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵𝐵) = 0)
183182adantr 480 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) = 0)
18417ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
185123a1i 11 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ ℝ+) → ℝ+ ⊆ ℝ)
186185sselda 3943 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
187184, 186plyrecld 34533 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
18825ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
189186, 188reexpcld 14104 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
190186recnd 11178 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
191 simpr 484 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
192191rpne0d 12976 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
19330ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
194190, 192, 193expne0d 14093 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
195187, 189, 194redivcld 11986 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
19641ad2antrr 726 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
197195, 196, 196absdifltd 15378 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵 ↔ ((𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + 𝐵))))
198197simprbda 498 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)))
199183, 198eqbrtrrd 5126 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < ((𝐹𝑑) / (𝑑𝐷)))
200191, 193rpexpcld 14188 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
201187, 200gt0divd 13008 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
202201adantr 480 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
203199, 202mpbird 257 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < (𝐹𝑑))
204180, 203syldan 591 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 0 < (𝐹𝑑))
205 0red 11153 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 ∈ ℝ)
206 simplr 768 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ+)
207206rpred 12971 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ)
208206rpgt0d 12974 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝑑)
20935, 207, 65sylancr 587 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℝ)
210209, 67sstrdi 3956 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℂ)
21170ad3antrrr 730 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐹 ∈ (ℂ–cn→ℂ))
21217ad4antr 732 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
213209sselda 3943 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
214212, 213plyrecld 34533 . . . . . 6 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
21594ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) = (𝐶‘0))
216 simplll 774 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝜑)
217 simpr1 1195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 𝐵 ∈ ℝ+)
218217rpgt0d 12974 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 0 < 𝐵)
2192183anassrs 1361 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝐵)
22088, 41, 89mul2lt0rgt0 13032 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0)
221216, 219, 220syl2anc 584 . . . . . . . . 9 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐴 < 0)
22283, 221eqbrtrrid 5138 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐶‘0) < 0)
223215, 222eqbrtrd 5124 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) < 0)
224 simpr 484 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < (𝐹𝑑))
225223, 224jca 511 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ((𝐹‘0) < 0 ∧ 0 < (𝐹𝑑)))
226205, 207, 205, 208, 210, 211, 214, 225ivth 25388 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
227206, 108, 1093syl 18 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
228226, 227mpd 15 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
229204, 228syldan 591 . . 3 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
230165adantr 480 . . . 4 ((𝜑𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
231 simpr 484 . . . . 5 ((𝜑𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
232 simpr 484 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
233232breq2d 5114 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
234233imbi2d 340 . . . . . 6 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
235234rexralbidv 3201 . . . . 5 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
236231, 235rspcdv 3577 . . . 4 ((𝜑𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
237230, 236mpd 15 . . 3 ((𝜑𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
238229, 237r19.29a 3141 . 2 ((𝜑𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
239 signsply0.2 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
24022, 36dgreq0 26204 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
24117, 240syl 17 . . . . . 6 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
242241necon3bid 2969 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 ↔ (𝐶𝐷) ≠ 0))
243239, 242mpbid 232 . . . 4 (𝜑 → (𝐶𝐷) ≠ 0)
24434neeq1i 2989 . . . 4 (𝐵 ≠ 0 ↔ (𝐶𝐷) ≠ 0)
245243, 244sylibr 234 . . 3 (𝜑𝐵 ≠ 0)
246 rpneg 12961 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℝ+ ↔ ¬ -𝐵 ∈ ℝ+))
247246biimprd 248 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (¬ -𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
248247orrd 863 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
24941, 245, 248syl2anc 584 . 2 (𝜑 → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
250173, 238, 249mpjaodan 960 1 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911   class class class wbr 5102  cmpt 5183   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  0cn0 12418  cz 12505  +crp 12927  (,)cioo 13282  [,)cico 13284  [,]cicc 13285  cexp 14002  abscabs 15176  𝑟 crli 15427  cnccncf 24802  0𝑝c0p 25603  Polycply 26122  coeffccoe 26124  degcdgr 26125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-0p 25604  df-limc 25800  df-dv 25801  df-ply 26126  df-coe 26128  df-dgr 26129  df-log 26498  df-cxp 26499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator