Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsply0 Structured version   Visualization version   GIF version

Theorem signsply0 31828
Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient 𝐴 and 𝐵 are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsply0.a 𝐴 = (𝐶‘0)
signsply0.1 (𝜑𝐹 ∈ (Poly‘ℝ))
signsply0.2 (𝜑𝐹 ≠ 0𝑝)
signsply0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
signsply0 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐹   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem signsply0
Dummy variables 𝑒 𝑑 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑 ∈ ℝ+)
2 simpr 488 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
3 rpxr 12376 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
43xrleidd 12523 . . . . . . 7 (𝑑 ∈ ℝ+𝑑𝑑)
54ad2antlr 726 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑𝑑)
6 id 22 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
7 simpr 488 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → 𝑓 = 𝑑)
87breq2d 5051 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑑𝑓𝑑𝑑))
97fveq2d 6647 . . . . . . . . . . 11 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝐹𝑓) = (𝐹𝑑))
107oveq1d 7145 . . . . . . . . . . 11 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑓𝐷) = (𝑑𝐷))
119, 10oveq12d 7148 . . . . . . . . . 10 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝐹𝑓) / (𝑓𝐷)) = ((𝐹𝑑) / (𝑑𝐷)))
1211fvoveq1d 7152 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) = (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)))
1312breq1d 5049 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵))
148, 13imbi12d 348 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
156, 14rspcdv 3592 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
161, 2, 5, 15syl3c 66 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)
17 signsply0.1 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Poly‘ℝ))
1817ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
19 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 12409 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2118, 20plyrecld 31826 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
22 signsply0.d . . . . . . . . . . . . 13 𝐷 = (deg‘𝐹)
23 dgrcl 24808 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2417, 23syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
2522, 24eqeltrid 2916 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
2625ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
2720, 26reexpcld 13511 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
2819rpcnd 12411 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
2919rpne0d 12414 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
3025nn0zd 12063 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℤ)
3130ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
3228, 29, 31expne0d 13500 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
3321, 27, 32redivcld 11445 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
34 signsply0.b . . . . . . . . . . . 12 𝐵 = (𝐶𝐷)
35 0re 10620 . . . . . . . . . . . . . 14 0 ∈ ℝ
36 signsply0.c . . . . . . . . . . . . . . 15 𝐶 = (coeff‘𝐹)
3736coef2 24806 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → 𝐶:ℕ0⟶ℝ)
3835, 37mpan2 690 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℝ)
3938ffvelrnda 6824 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → (𝐶𝐷) ∈ ℝ)
4034, 39eqeltrid 2916 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → 𝐵 ∈ ℝ)
4117, 25, 40syl2anc 587 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
4241ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
4342renegcld 11044 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → -𝐵 ∈ ℝ)
4433, 42, 43absdifltd 14772 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵 ↔ ((𝐵 − -𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))))
4544simplbda 503 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))
4641recnd 10646 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4746ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
4847negidd 10964 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵 + -𝐵) = 0)
4948adantr 484 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐵 + -𝐵) = 0)
5045, 49breqtrd 5065 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < 0)
5119, 31rpexpcld 13592 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
5221, 51ge0divd 12447 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 ≤ (𝐹𝑑) ↔ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5352notbid 321 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (¬ 0 ≤ (𝐹𝑑) ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
54 0red 10621 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 0 ∈ ℝ)
5521, 54ltnled 10764 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ¬ 0 ≤ (𝐹𝑑)))
5633, 54ltnled 10764 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (((𝐹𝑑) / (𝑑𝐷)) < 0 ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5753, 55, 563bitr4d 314 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
5857adantr 484 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
5950, 58mpbird 260 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐹𝑑) < 0)
6016, 59syldan 594 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (𝐹𝑑) < 0)
61 0red 10621 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 ∈ ℝ)
62 simplr 768 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ+)
6362rpred 12409 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ)
6462rpgt0d 12412 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < 𝑑)
65 iccssre 12797 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (0[,]𝑑) ⊆ ℝ)
6635, 63, 65sylancr 590 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℝ)
67 ax-resscn 10571 . . . . . . 7 ℝ ⊆ ℂ
6866, 67sstrdi 3955 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℂ)
69 plycn 24836 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐹 ∈ (ℂ–cn→ℂ))
7017, 69syl 17 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
7170ad3antrrr 729 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐹 ∈ (ℂ–cn→ℂ))
7217ad4antr 731 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
7366sselda 3943 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
7472, 73plyrecld 31826 . . . . . 6 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
75 simpr 488 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹𝑑) < 0)
76 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝜑)
7776, 41syl 17 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 ∈ ℝ)
78 simpr 488 . . . . . . . . . . 11 ((𝜑 ∧ -𝐵 ∈ ℝ+) → -𝐵 ∈ ℝ+)
7978ad2antrr 725 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → -𝐵 ∈ ℝ+)
80 negelrp 12400 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
8180biimpa 480 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℝ+) → 𝐵 < 0)
8277, 79, 81syl2anc 587 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 < 0)
83 signsply0.a . . . . . . . . . . . 12 𝐴 = (𝐶‘0)
8417, 35, 37sylancl 589 . . . . . . . . . . . . 13 (𝜑𝐶:ℕ0⟶ℝ)
85 0nn0 11890 . . . . . . . . . . . . . 14 0 ∈ ℕ0
8685a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
8784, 86ffvelrnd 6825 . . . . . . . . . . . 12 (𝜑 → (𝐶‘0) ∈ ℝ)
8883, 87eqeltrid 2916 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
89 signsply0.3 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) < 0)
9088, 41, 89mul2lt0rlt0 12469 . . . . . . . . . 10 ((𝜑𝐵 < 0) → 0 < 𝐴)
9190, 83breqtrdi 5080 . . . . . . . . 9 ((𝜑𝐵 < 0) → 0 < (𝐶‘0))
9276, 82, 91syl2anc 587 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐶‘0))
9336coefv0 24823 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℝ) → (𝐹‘0) = (𝐶‘0))
9417, 93syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = (𝐶‘0))
9594ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹‘0) = (𝐶‘0))
9692, 95breqtrrd 5067 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐹‘0))
9775, 96jca 515 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ((𝐹𝑑) < 0 ∧ 0 < (𝐹‘0)))
9861, 63, 61, 64, 68, 71, 74, 97ivth2 24037 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
99 0le0 11716 . . . . . . . 8 0 ≤ 0
100 pnfge 12503 . . . . . . . . 9 (𝑑 ∈ ℝ*𝑑 ≤ +∞)
1013, 100syl 17 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ≤ +∞)
102 0xr 10665 . . . . . . . . 9 0 ∈ ℝ*
103 pnfxr 10672 . . . . . . . . 9 +∞ ∈ ℝ*
104 ioossioo 12809 . . . . . . . . 9 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ +∞)) → (0(,)𝑑) ⊆ (0(,)+∞))
105102, 103, 104mpanl12 701 . . . . . . . 8 ((0 ≤ 0 ∧ 𝑑 ≤ +∞) → (0(,)𝑑) ⊆ (0(,)+∞))
10699, 101, 105sylancr 590 . . . . . . 7 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ (0(,)+∞))
107 ioorp 12793 . . . . . . 7 (0(,)+∞) = ℝ+
108106, 107sseqtrdi 3993 . . . . . 6 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ ℝ+)
109 ssrexv 4010 . . . . . 6 ((0(,)𝑑) ⊆ ℝ+ → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
11062, 108, 1093syl 18 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
11198, 110mpd 15 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
11260, 111syldan 594 . . 3 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
113 plyf 24773 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
11417, 113syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
115114ffnd 6488 . . . . . . . . 9 (𝜑𝐹 Fn ℂ)
116 ovex 7163 . . . . . . . . . . 11 (𝑥𝐷) ∈ V
117116rgenw 3138 . . . . . . . . . 10 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
118 eqid 2821 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
119118fnmpt 6461 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
120117, 119mp1i 13 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
121 cnex 10595 . . . . . . . . . 10 ℂ ∈ V
122121a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
123 rpssre 12374 . . . . . . . . . . . 12 + ⊆ ℝ
124123, 67sstri 3952 . . . . . . . . . . 11 + ⊆ ℂ
125121, 124ssexi 5199 . . . . . . . . . 10 + ∈ V
126125a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ∈ V)
127 sseqin2 4167 . . . . . . . . . 10 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
128124, 127mpbi 233 . . . . . . . . 9 (ℂ ∩ ℝ+) = ℝ+
129 eqidd 2822 . . . . . . . . 9 ((𝜑𝑓 ∈ ℂ) → (𝐹𝑓) = (𝐹𝑓))
130 eqidd 2822 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)))
131 simpr 488 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
132131oveq1d 7145 . . . . . . . . . 10 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → (𝑥𝐷) = (𝑓𝐷))
133 simpr 488 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℝ+)
134 ovexd 7165 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ V)
135130, 132, 133, 134fvmptd 6748 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝑥 ∈ ℝ+ ↦ (𝑥𝐷))‘𝑓) = (𝑓𝐷))
136115, 120, 122, 126, 128, 129, 135offval 7391 . . . . . . . 8 (𝜑 → (𝐹f / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) = (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))))
137 oveq1 7137 . . . . . . . . . . 11 (𝑥 = 𝑓 → (𝑥𝐷) = (𝑓𝐷))
138137cbvmptv 5142 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑓 ∈ ℝ+ ↦ (𝑓𝐷))
13922, 36, 34, 138signsplypnf 31827 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
14017, 139syl 17 . . . . . . . 8 (𝜑 → (𝐹f / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
141136, 140eqbrtrrd 5063 . . . . . . 7 (𝜑 → (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵)
142114adantr 484 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐹:ℂ⟶ℂ)
143133rpcnd 12411 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℂ)
144142, 143ffvelrnd 6825 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝐹𝑓) ∈ ℂ)
14525adantr 484 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℕ0)
146143, 145expcld 13494 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ ℂ)
147133rpne0d 12414 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ≠ 0)
14830adantr 484 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℤ)
149143, 147, 148expne0d 13500 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ≠ 0)
150144, 146, 149divcld 11393 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
151150ralrimiva 3170 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ ℝ+ ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
152123a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
153 1red 10619 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
154151, 152, 46, 153rlim3 14834 . . . . . . 7 (𝜑 → ((𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵 ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
155141, 154mpbid 235 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
156 0lt1 11139 . . . . . . . . . 10 0 < 1
157 pnfge 12503 . . . . . . . . . . 11 (+∞ ∈ ℝ* → +∞ ≤ +∞)
158103, 157ax-mp 5 . . . . . . . . . 10 +∞ ≤ +∞
159 icossioo 12808 . . . . . . . . . 10 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 1 ∧ +∞ ≤ +∞)) → (1[,)+∞) ⊆ (0(,)+∞))
160102, 103, 156, 158, 159mp4an 692 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
161160, 107sseqtri 3979 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
162 ssrexv 4010 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
163161, 162ax-mp 5 . . . . . . 7 (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
164163ralimi 3148 . . . . . 6 (∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
165155, 164syl 17 . . . . 5 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
166165adantr 484 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
167 simpr 488 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → 𝑒 = -𝐵)
168167breq2d 5051 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
169168imbi2d 344 . . . . . 6 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
170169rexralbidv 3287 . . . . 5 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
17178, 170rspcdv 3592 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
172166, 171mpd 15 . . 3 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
173112, 172r19.29a 3275 . 2 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
174 simplr 768 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑 ∈ ℝ+)
175 simpr 488 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
1764ad2antlr 726 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑𝑑)
17712breq1d 5049 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵))
1788, 177imbi12d 348 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
1796, 178rspcdv 3592 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
180174, 175, 176, 179syl3c 66 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)
18146ad2antrr 725 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
182181subidd 10962 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵𝐵) = 0)
183182adantr 484 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) = 0)
18417ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
185123a1i 11 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ ℝ+) → ℝ+ ⊆ ℝ)
186185sselda 3943 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
187184, 186plyrecld 31826 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
18825ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
189186, 188reexpcld 13511 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
190186recnd 10646 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
191 simpr 488 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
192191rpne0d 12414 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
19330ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
194190, 192, 193expne0d 13500 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
195187, 189, 194redivcld 11445 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
19641ad2antrr 725 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
197195, 196, 196absdifltd 14772 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵 ↔ ((𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + 𝐵))))
198197simprbda 502 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)))
199183, 198eqbrtrrd 5063 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < ((𝐹𝑑) / (𝑑𝐷)))
200191, 193rpexpcld 13592 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
201187, 200gt0divd 12446 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
202201adantr 484 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
203199, 202mpbird 260 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < (𝐹𝑑))
204180, 203syldan 594 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 0 < (𝐹𝑑))
205 0red 10621 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 ∈ ℝ)
206 simplr 768 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ+)
207206rpred 12409 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ)
208206rpgt0d 12412 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝑑)
20935, 207, 65sylancr 590 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℝ)
210209, 67sstrdi 3955 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℂ)
21170ad3antrrr 729 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐹 ∈ (ℂ–cn→ℂ))
21217ad4antr 731 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
213209sselda 3943 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
214212, 213plyrecld 31826 . . . . . 6 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
21594ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) = (𝐶‘0))
216 simplll 774 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝜑)
217 simpr1 1191 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 𝐵 ∈ ℝ+)
218217rpgt0d 12412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 0 < 𝐵)
2192183anassrs 1357 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝐵)
22088, 41, 89mul2lt0rgt0 12470 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0)
221216, 219, 220syl2anc 587 . . . . . . . . 9 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐴 < 0)
22283, 221eqbrtrrid 5075 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐶‘0) < 0)
223215, 222eqbrtrd 5061 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) < 0)
224 simpr 488 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < (𝐹𝑑))
225223, 224jca 515 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ((𝐹‘0) < 0 ∧ 0 < (𝐹𝑑)))
226205, 207, 205, 208, 210, 211, 214, 225ivth 24036 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
227206, 108, 1093syl 18 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
228226, 227mpd 15 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
229204, 228syldan 594 . . 3 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
230165adantr 484 . . . 4 ((𝜑𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
231 simpr 488 . . . . 5 ((𝜑𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
232 simpr 488 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
233232breq2d 5051 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
234233imbi2d 344 . . . . . 6 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
235234rexralbidv 3287 . . . . 5 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
236231, 235rspcdv 3592 . . . 4 ((𝜑𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
237230, 236mpd 15 . . 3 ((𝜑𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
238229, 237r19.29a 3275 . 2 ((𝜑𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
239 signsply0.2 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
24022, 36dgreq0 24840 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
24117, 240syl 17 . . . . . 6 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
242241necon3bid 3051 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 ↔ (𝐶𝐷) ≠ 0))
243239, 242mpbid 235 . . . 4 (𝜑 → (𝐶𝐷) ≠ 0)
24434neeq1i 3071 . . . 4 (𝐵 ≠ 0 ↔ (𝐶𝐷) ≠ 0)
245243, 244sylibr 237 . . 3 (𝜑𝐵 ≠ 0)
246 rpneg 12399 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℝ+ ↔ ¬ -𝐵 ∈ ℝ+))
247246biimprd 251 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (¬ -𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
248247orrd 860 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
24941, 245, 248syl2anc 587 . 2 (𝜑 → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
250173, 238, 249mpjaodan 956 1 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  wrex 3127  Vcvv 3471  cin 3909  wss 3910   class class class wbr 5039  cmpt 5119   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7130  f cof 7382  cc 10512  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519  +∞cpnf 10649  *cxr 10651   < clt 10652  cle 10653  cmin 10847  -cneg 10848   / cdiv 11274  0cn0 11875  cz 11959  +crp 12367  (,)cioo 12716  [,)cico 12718  [,]cicc 12719  cexp 13413  abscabs 14572  𝑟 crli 14821  cnccncf 23459  0𝑝c0p 24251  Polycply 24759  coeffccoe 24761  degcdgr 24762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-xms 22905  df-ms 22906  df-tms 22907  df-cncf 23461  df-0p 24252  df-limc 24447  df-dv 24448  df-ply 24763  df-coe 24765  df-dgr 24766  df-log 25126  df-cxp 25127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator