MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kerf1ghm Structured version   Visualization version   GIF version

Theorem kerf1ghm 19491
Description: A group homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
kerf1ghm.a 𝐴 = (Base‘𝑅)
kerf1ghm.b 𝐵 = (Base‘𝑆)
kerf1ghm.n 𝑁 = (0g𝑅)
kerf1ghm.1 0 = (0g𝑆)
Assertion
Ref Expression
kerf1ghm (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))

Proof of Theorem kerf1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
2 f1fn 6570 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
32adantl 484 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
4 elpreima 6822 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 })))
53, 4syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 })))
65biimpa 479 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 }))
76simpld 497 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → 𝑥𝐴)
86simprd 498 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
9 fvex 6677 . . . . . . . . 9 (𝐹𝑥) ∈ V
109elsn 4575 . . . . . . . 8 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
118, 10sylib 220 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) = 0 )
12 kerf1ghm.a . . . . . . . . . . 11 𝐴 = (Base‘𝑅)
13 kerf1ghm.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
14 kerf1ghm.1 . . . . . . . . . . 11 0 = (0g𝑆)
15 kerf1ghm.n . . . . . . . . . . 11 𝑁 = (0g𝑅)
1612, 13, 14, 15f1ghm0to0 19486 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
1716biimpd 231 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
18173expa 1114 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
1918imp 409 . . . . . . 7 ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) ∧ (𝐹𝑥) = 0 ) → 𝑥 = 𝑁)
201, 7, 11, 19syl21anc 835 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → 𝑥 = 𝑁)
2120ex 415 . . . . 5 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) → 𝑥 = 𝑁))
22 velsn 4576 . . . . 5 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
2321, 22syl6ibr 254 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) → 𝑥 ∈ {𝑁}))
2423ssrdv 3972 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 “ { 0 }) ⊆ {𝑁})
25 ghmgrp1 18354 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
2612, 15grpidcl 18125 . . . . . . 7 (𝑅 ∈ Grp → 𝑁𝐴)
2725, 26syl 17 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁𝐴)
2815, 14ghmid 18358 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) = 0 )
29 fvex 6677 . . . . . . . 8 (𝐹𝑁) ∈ V
3029elsn 4575 . . . . . . 7 ((𝐹𝑁) ∈ { 0 } ↔ (𝐹𝑁) = 0 )
3128, 30sylibr 236 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) ∈ { 0 })
3212, 13ghmf 18356 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴𝐵)
33 ffn 6508 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
34 elpreima 6822 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑁 ∈ (𝐹 “ { 0 }) ↔ (𝑁𝐴 ∧ (𝐹𝑁) ∈ { 0 })))
3532, 33, 343syl 18 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑁 ∈ (𝐹 “ { 0 }) ↔ (𝑁𝐴 ∧ (𝐹𝑁) ∈ { 0 })))
3627, 31, 35mpbir2and 711 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ (𝐹 “ { 0 }))
3736snssd 4735 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → {𝑁} ⊆ (𝐹 “ { 0 }))
3837adantr 483 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → {𝑁} ⊆ (𝐹 “ { 0 }))
3924, 38eqssd 3983 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 “ { 0 }) = {𝑁})
4032adantr 483 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴𝐵)
41 simpl 485 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
42 simpr2l 1228 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
43 simpr2r 1229 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
44 simpr3 1192 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
45 eqid 2821 . . . . . . . . . . . 12 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
46 eqid 2821 . . . . . . . . . . . 12 (-g𝑅) = (-g𝑅)
4712, 14, 45, 46ghmeqker 18379 . . . . . . . . . . 11 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 })))
4847biimpa 479 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 }))
4941, 42, 43, 44, 48syl31anc 1369 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 }))
50 simpr1 1190 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 “ { 0 }) = {𝑁})
5149, 50eleqtrd 2915 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ {𝑁})
52 ovex 7183 . . . . . . . . 9 (𝑥(-g𝑅)𝑦) ∈ V
5352elsn 4575 . . . . . . . 8 ((𝑥(-g𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g𝑅)𝑦) = 𝑁)
5451, 53sylib 220 . . . . . . 7 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) = 𝑁)
5541, 25syl 17 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑅 ∈ Grp)
5612, 15, 46grpsubeq0 18179 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐴𝑦𝐴) → ((𝑥(-g𝑅)𝑦) = 𝑁𝑥 = 𝑦))
5755, 42, 43, 56syl3anc 1367 . . . . . . 7 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥(-g𝑅)𝑦) = 𝑁𝑥 = 𝑦))
5854, 57mpbid 234 . . . . . 6 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
59583anassrs 1356 . . . . 5 ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
6059ex 415 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6160ralrimivva 3191 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
62 dff13 7007 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6340, 61, 62sylanbrc 585 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴1-1𝐵)
6439, 63impbida 799 1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935  {csn 4560  ccnv 5548  cima 5552   Fn wfn 6344  wf 6345  1-1wf1 6346  cfv 6349  (class class class)co 7150  Basecbs 16477  0gc0g 16707  Grpcgrp 18097  -gcsg 18099   GrpHom cghm 18349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-ghm 18350
This theorem is referenced by:  dimkerim  31018  zrhf1ker  31211
  Copyright terms: Public domain W3C validator