MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kerf1ghm Structured version   Visualization version   GIF version

Theorem kerf1ghm 19287
Description: A group homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a 𝐴 = (Base‘𝑅)
f1ghm0to0.b 𝐵 = (Base‘𝑆)
f1ghm0to0.n 𝑁 = (0g𝑅)
f1ghm0to0.0 0 = (0g𝑆)
Assertion
Ref Expression
kerf1ghm (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))

Proof of Theorem kerf1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
2 f1fn 6818 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
32adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
4 elpreima 7091 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 })))
53, 4syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 })))
65biimpa 476 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝑥𝐴 ∧ (𝐹𝑥) ∈ { 0 }))
76simpld 494 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → 𝑥𝐴)
86simprd 495 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
9 fvex 6933 . . . . . . . . 9 (𝐹𝑥) ∈ V
109elsn 4663 . . . . . . . 8 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
118, 10sylib 218 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) = 0 )
12 f1ghm0to0.a . . . . . . . . . . 11 𝐴 = (Base‘𝑅)
13 f1ghm0to0.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
14 f1ghm0to0.n . . . . . . . . . . 11 𝑁 = (0g𝑅)
15 f1ghm0to0.0 . . . . . . . . . . 11 0 = (0g𝑆)
1612, 13, 14, 15f1ghm0to0 19285 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
1716biimpd 229 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
18173expa 1118 . . . . . . . 8 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
1918imp 406 . . . . . . 7 ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) ∧ (𝐹𝑥) = 0 ) → 𝑥 = 𝑁)
201, 7, 11, 19syl21anc 837 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → 𝑥 = 𝑁)
2120ex 412 . . . . 5 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) → 𝑥 = 𝑁))
22 velsn 4664 . . . . 5 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
2321, 22imbitrrdi 252 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝑥 ∈ (𝐹 “ { 0 }) → 𝑥 ∈ {𝑁}))
2423ssrdv 4014 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 “ { 0 }) ⊆ {𝑁})
25 ghmgrp1 19258 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
2612, 14grpidcl 19005 . . . . . . 7 (𝑅 ∈ Grp → 𝑁𝐴)
2725, 26syl 17 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁𝐴)
2814, 15ghmid 19262 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) = 0 )
29 fvex 6933 . . . . . . . 8 (𝐹𝑁) ∈ V
3029elsn 4663 . . . . . . 7 ((𝐹𝑁) ∈ { 0 } ↔ (𝐹𝑁) = 0 )
3128, 30sylibr 234 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) ∈ { 0 })
3212, 13ghmf 19260 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴𝐵)
33 ffn 6747 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
34 elpreima 7091 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑁 ∈ (𝐹 “ { 0 }) ↔ (𝑁𝐴 ∧ (𝐹𝑁) ∈ { 0 })))
3532, 33, 343syl 18 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑁 ∈ (𝐹 “ { 0 }) ↔ (𝑁𝐴 ∧ (𝐹𝑁) ∈ { 0 })))
3627, 31, 35mpbir2and 712 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ (𝐹 “ { 0 }))
3736snssd 4834 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → {𝑁} ⊆ (𝐹 “ { 0 }))
3837adantr 480 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → {𝑁} ⊆ (𝐹 “ { 0 }))
3924, 38eqssd 4026 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 “ { 0 }) = {𝑁})
4032adantr 480 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴𝐵)
41 simpl 482 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
42 simpr2l 1232 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
43 simpr2r 1233 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
44 simpr3 1196 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
45 eqid 2740 . . . . . . . . . . . 12 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
46 eqid 2740 . . . . . . . . . . . 12 (-g𝑅) = (-g𝑅)
4712, 15, 45, 46ghmeqker 19283 . . . . . . . . . . 11 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 })))
4847biimpa 476 . . . . . . . . . 10 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 }))
4941, 42, 43, 44, 48syl31anc 1373 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ (𝐹 “ { 0 }))
50 simpr1 1194 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 “ { 0 }) = {𝑁})
5149, 50eleqtrd 2846 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) ∈ {𝑁})
52 ovex 7481 . . . . . . . . 9 (𝑥(-g𝑅)𝑦) ∈ V
5352elsn 4663 . . . . . . . 8 ((𝑥(-g𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g𝑅)𝑦) = 𝑁)
5451, 53sylib 218 . . . . . . 7 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑥(-g𝑅)𝑦) = 𝑁)
5525adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑅 ∈ Grp)
5612, 14, 46grpsubeq0 19066 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐴𝑦𝐴) → ((𝑥(-g𝑅)𝑦) = 𝑁𝑥 = 𝑦))
5755, 42, 43, 56syl3anc 1371 . . . . . . 7 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑥(-g𝑅)𝑦) = 𝑁𝑥 = 𝑦))
5854, 57mpbid 232 . . . . . 6 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((𝐹 “ { 0 }) = {𝑁} ∧ (𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
59583anassrs 1360 . . . . 5 ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
6059ex 412 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6160ralrimivva 3208 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
62 dff13 7292 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6340, 61, 62sylanbrc 582 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴1-1𝐵)
6439, 63impbida 800 1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  {csn 4648  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  -gcsg 18975   GrpHom cghm 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-ghm 19253
This theorem is referenced by:  ghmqusker  19327  rngqiprngimf1  21333  dimkerim  33640  lvecendof1f1o  33646  zrhf1ker  33921
  Copyright terms: Public domain W3C validator