| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
| 2 | | f1fn 6805 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| 3 | 2 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 Fn 𝐴) |
| 4 | | elpreima 7078 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 }))) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 }))) |
| 6 | 5 | biimpa 476 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 })) |
| 7 | 6 | simpld 494 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → 𝑥 ∈ 𝐴) |
| 8 | 6 | simprd 495 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) ∈ { 0 }) |
| 9 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ∈ V |
| 10 | 9 | elsn 4641 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 ) |
| 11 | 8, 10 | sylib 218 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) = 0 ) |
| 12 | | f1ghm0to0.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Base‘𝑅) |
| 13 | | f1ghm0to0.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑆) |
| 14 | | f1ghm0to0.n |
. . . . . . . . . . 11
⊢ 𝑁 = (0g‘𝑅) |
| 15 | | f1ghm0to0.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
| 16 | 12, 13, 14, 15 | f1ghm0to0 19263 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 𝑁)) |
| 17 | 16 | biimpd 229 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
| 18 | 17 | 3expa 1119 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
| 19 | 18 | imp 406 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) = 0 ) → 𝑥 = 𝑁) |
| 20 | 1, 7, 11, 19 | syl21anc 838 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → 𝑥 = 𝑁) |
| 21 | 20 | ex 412 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) → 𝑥 = 𝑁)) |
| 22 | | velsn 4642 |
. . . . 5
⊢ (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁) |
| 23 | 21, 22 | imbitrrdi 252 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) → 𝑥 ∈ {𝑁})) |
| 24 | 23 | ssrdv 3989 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (◡𝐹 “ { 0 }) ⊆ {𝑁}) |
| 25 | | ghmgrp1 19236 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) |
| 26 | 12, 14 | grpidcl 18983 |
. . . . . . 7
⊢ (𝑅 ∈ Grp → 𝑁 ∈ 𝐴) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ 𝐴) |
| 28 | 14, 15 | ghmid 19240 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) = 0 ) |
| 29 | | fvex 6919 |
. . . . . . . 8
⊢ (𝐹‘𝑁) ∈ V |
| 30 | 29 | elsn 4641 |
. . . . . . 7
⊢ ((𝐹‘𝑁) ∈ { 0 } ↔ (𝐹‘𝑁) = 0 ) |
| 31 | 28, 30 | sylibr 234 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) ∈ { 0 }) |
| 32 | 12, 13 | ghmf 19238 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴⟶𝐵) |
| 33 | | ffn 6736 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 34 | | elpreima 7078 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑁 ∈ (◡𝐹 “ { 0 }) ↔ (𝑁 ∈ 𝐴 ∧ (𝐹‘𝑁) ∈ { 0 }))) |
| 35 | 32, 33, 34 | 3syl 18 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑁 ∈ (◡𝐹 “ { 0 }) ↔ (𝑁 ∈ 𝐴 ∧ (𝐹‘𝑁) ∈ { 0 }))) |
| 36 | 27, 31, 35 | mpbir2and 713 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ (◡𝐹 “ { 0 })) |
| 37 | 36 | snssd 4809 |
. . . 4
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → {𝑁} ⊆ (◡𝐹 “ { 0 })) |
| 38 | 37 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → {𝑁} ⊆ (◡𝐹 “ { 0 })) |
| 39 | 24, 38 | eqssd 4001 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (◡𝐹 “ { 0 }) = {𝑁}) |
| 40 | 32 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴⟶𝐵) |
| 41 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 42 | | simpr2l 1233 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝐴) |
| 43 | | simpr2r 1234 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝐴) |
| 44 | | simpr3 1197 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 45 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ { 0 }) = (◡𝐹 “ { 0 }) |
| 46 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 47 | 12, 15, 45, 46 | ghmeqker 19261 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 }))) |
| 48 | 47 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 })) |
| 49 | 41, 42, 43, 44, 48 | syl31anc 1375 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 })) |
| 50 | | simpr1 1195 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (◡𝐹 “ { 0 }) = {𝑁}) |
| 51 | 49, 50 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ {𝑁}) |
| 52 | | ovex 7464 |
. . . . . . . . 9
⊢ (𝑥(-g‘𝑅)𝑦) ∈ V |
| 53 | 52 | elsn 4641 |
. . . . . . . 8
⊢ ((𝑥(-g‘𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g‘𝑅)𝑦) = 𝑁) |
| 54 | 51, 53 | sylib 218 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) = 𝑁) |
| 55 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑅 ∈ Grp) |
| 56 | 12, 14, 46 | grpsubeq0 19044 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑥(-g‘𝑅)𝑦) = 𝑁 ↔ 𝑥 = 𝑦)) |
| 57 | 55, 42, 43, 56 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑥(-g‘𝑅)𝑦) = 𝑁 ↔ 𝑥 = 𝑦)) |
| 58 | 54, 57 | mpbid 232 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) |
| 59 | 58 | 3anassrs 1361 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
| 60 | 59 | ex 412 |
. . . 4
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 61 | 60 | ralrimivva 3202 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 62 | | dff13 7275 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 63 | 40, 61, 62 | sylanbrc 583 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴–1-1→𝐵) |
| 64 | 39, 63 | impbida 801 |
1
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) |