Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
2 | | f1fn 6671 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
3 | 2 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 Fn 𝐴) |
4 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 }))) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 }))) |
6 | 5 | biimpa 477 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ { 0 })) |
7 | 6 | simpld 495 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → 𝑥 ∈ 𝐴) |
8 | 6 | simprd 496 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) ∈ { 0 }) |
9 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ∈ V |
10 | 9 | elsn 4576 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 ) |
11 | 8, 10 | sylib 217 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) = 0 ) |
12 | | kerf1ghm.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Base‘𝑅) |
13 | | kerf1ghm.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑆) |
14 | | kerf1ghm.1 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
15 | | kerf1ghm.n |
. . . . . . . . . . 11
⊢ 𝑁 = (0g‘𝑅) |
16 | 12, 13, 14, 15 | f1ghm0to0 19984 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 𝑁)) |
17 | 16 | biimpd 228 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
18 | 17 | 3expa 1117 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁)) |
19 | 18 | imp 407 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) = 0 ) → 𝑥 = 𝑁) |
20 | 1, 7, 11, 19 | syl21anc 835 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → 𝑥 = 𝑁) |
21 | 20 | ex 413 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) → 𝑥 = 𝑁)) |
22 | | velsn 4577 |
. . . . 5
⊢ (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁) |
23 | 21, 22 | syl6ibr 251 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ (◡𝐹 “ { 0 }) → 𝑥 ∈ {𝑁})) |
24 | 23 | ssrdv 3927 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (◡𝐹 “ { 0 }) ⊆ {𝑁}) |
25 | | ghmgrp1 18836 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) |
26 | 12, 15 | grpidcl 18607 |
. . . . . . 7
⊢ (𝑅 ∈ Grp → 𝑁 ∈ 𝐴) |
27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ 𝐴) |
28 | 15, 14 | ghmid 18840 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) = 0 ) |
29 | | fvex 6787 |
. . . . . . . 8
⊢ (𝐹‘𝑁) ∈ V |
30 | 29 | elsn 4576 |
. . . . . . 7
⊢ ((𝐹‘𝑁) ∈ { 0 } ↔ (𝐹‘𝑁) = 0 ) |
31 | 28, 30 | sylibr 233 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘𝑁) ∈ { 0 }) |
32 | 12, 13 | ghmf 18838 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴⟶𝐵) |
33 | | ffn 6600 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
34 | | elpreima 6935 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (𝑁 ∈ (◡𝐹 “ { 0 }) ↔ (𝑁 ∈ 𝐴 ∧ (𝐹‘𝑁) ∈ { 0 }))) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑁 ∈ (◡𝐹 “ { 0 }) ↔ (𝑁 ∈ 𝐴 ∧ (𝐹‘𝑁) ∈ { 0 }))) |
36 | 27, 31, 35 | mpbir2and 710 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁 ∈ (◡𝐹 “ { 0 })) |
37 | 36 | snssd 4742 |
. . . 4
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → {𝑁} ⊆ (◡𝐹 “ { 0 })) |
38 | 37 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → {𝑁} ⊆ (◡𝐹 “ { 0 })) |
39 | 24, 38 | eqssd 3938 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) → (◡𝐹 “ { 0 }) = {𝑁}) |
40 | 32 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴⟶𝐵) |
41 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
42 | | simpr2l 1231 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝐴) |
43 | | simpr2r 1232 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝐴) |
44 | | simpr3 1195 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
45 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ { 0 }) = (◡𝐹 “ { 0 }) |
46 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(-g‘𝑅) = (-g‘𝑅) |
47 | 12, 14, 45, 46 | ghmeqker 18861 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 }))) |
48 | 47 | biimpa 477 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 })) |
49 | 41, 42, 43, 44, 48 | syl31anc 1372 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ (◡𝐹 “ { 0 })) |
50 | | simpr1 1193 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (◡𝐹 “ { 0 }) = {𝑁}) |
51 | 49, 50 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) ∈ {𝑁}) |
52 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑥(-g‘𝑅)𝑦) ∈ V |
53 | 52 | elsn 4576 |
. . . . . . . 8
⊢ ((𝑥(-g‘𝑅)𝑦) ∈ {𝑁} ↔ (𝑥(-g‘𝑅)𝑦) = 𝑁) |
54 | 51, 53 | sylib 217 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑥(-g‘𝑅)𝑦) = 𝑁) |
55 | 41, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑅 ∈ Grp) |
56 | 12, 15, 46 | grpsubeq0 18661 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑥(-g‘𝑅)𝑦) = 𝑁 ↔ 𝑥 = 𝑦)) |
57 | 55, 42, 43, 56 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑥(-g‘𝑅)𝑦) = 𝑁 ↔ 𝑥 = 𝑦)) |
58 | 54, 57 | mpbid 231 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ((◡𝐹 “ { 0 }) = {𝑁} ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) |
59 | 58 | 3anassrs 1359 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
60 | 59 | ex 413 |
. . . 4
⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
61 | 60 | ralrimivva 3123 |
. . 3
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
62 | | dff13 7128 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
63 | 40, 61, 62 | sylanbrc 583 |
. 2
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (◡𝐹 “ { 0 }) = {𝑁}) → 𝐹:𝐴–1-1→𝐵) |
64 | 39, 63 | impbida 798 |
1
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) |