MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrng2 Structured version   Visualization version   GIF version

Theorem issubrng2 20478
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
issubrng2.b 𝐵 = (Base‘𝑅)
issubrng2.t · = (.r𝑅)
Assertion
Ref Expression
issubrng2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubrng2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 20472 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 issubrng2.t . . . . . 6 · = (.r𝑅)
32subrngmcl 20477 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
433expb 1120 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 · 𝑦) ∈ 𝐴)
54ralrimivva 3178 . . 3 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
61, 5jca 511 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴))
7 simpl 482 . . . 4 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Rng)
8 simprl 770 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅))
9 eqid 2729 . . . . . . 7 (𝑅s 𝐴) = (𝑅s 𝐴)
109subgbas 19044 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
118, 10syl 17 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅s 𝐴)))
12 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
139, 12ressplusg 17230 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
148, 13syl 17 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
159, 2ressmulr 17246 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → · = (.r‘(𝑅s 𝐴)))
168, 15syl 17 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · = (.r‘(𝑅s 𝐴)))
17 rngabl 20075 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
189subgabl 19750 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝑅s 𝐴) ∈ Abel)
1917, 8, 18syl2an2r 685 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Abel)
20 simprr 772 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
21 oveq1 7376 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
2221eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴))
23 oveq2 7377 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2423eleq1d 2813 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴))
2522, 24rspc2v 3596 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴))
2620, 25syl5com 31 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴))
27263impib 1116 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴)
28 issubrng2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
2928subgss 19041 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴𝐵)
308, 29syl 17 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴𝐵)
3130sseld 3942 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢𝐴𝑢𝐵))
3230sseld 3942 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣𝐴𝑣𝐵))
3330sseld 3942 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤𝐴𝑤𝐵))
3431, 32, 333anim123d 1445 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3534imp 406 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
3628, 2rngass 20079 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
3736adantlr 715 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
3835, 37syldan 591 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
3928, 12, 2rngdi 20080 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4039adantlr 715 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4135, 40syldan 591 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4228, 12, 2rngdir 20081 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4342adantlr 715 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4435, 43syldan 591 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4511, 14, 16, 19, 27, 38, 41, 44isrngd 20093 . . . 4 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Rng)
4628issubrng 20467 . . . 4 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
477, 45, 30, 46syl3anbrc 1344 . . 3 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅))
4847ex 412 . 2 (𝑅 ∈ Rng → ((𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRng‘𝑅)))
496, 48impbid2 226 1 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  SubGrpcsubg 19034  Abelcabl 19695  Rngcrng 20072  SubRngcsubrng 20465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-mgm 18549  df-sgrp 18628  df-grp 18850  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-subrng 20466
This theorem is referenced by:  opprsubrng  20479  subrngint  20480  rhmimasubrng  20486  cntzsubrng  20487  pzriprnglem5  21427
  Copyright terms: Public domain W3C validator