MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrng2 Structured version   Visualization version   GIF version

Theorem issubrng2 20584
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
issubrng2.b 𝐵 = (Base‘𝑅)
issubrng2.t · = (.r𝑅)
Assertion
Ref Expression
issubrng2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubrng2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 20578 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 issubrng2.t . . . . . 6 · = (.r𝑅)
32subrngmcl 20583 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
433expb 1120 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 · 𝑦) ∈ 𝐴)
54ralrimivva 3208 . . 3 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
61, 5jca 511 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴))
7 simpl 482 . . . 4 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Rng)
8 simprl 770 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅))
9 eqid 2740 . . . . . . 7 (𝑅s 𝐴) = (𝑅s 𝐴)
109subgbas 19170 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
118, 10syl 17 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅s 𝐴)))
12 eqid 2740 . . . . . . 7 (+g𝑅) = (+g𝑅)
139, 12ressplusg 17349 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
148, 13syl 17 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
159, 2ressmulr 17366 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → · = (.r‘(𝑅s 𝐴)))
168, 15syl 17 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · = (.r‘(𝑅s 𝐴)))
17 rngabl 20182 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
189subgabl 19878 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝑅s 𝐴) ∈ Abel)
1917, 8, 18syl2an2r 684 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Abel)
20 simprr 772 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
21 oveq1 7455 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
2221eleq1d 2829 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴))
23 oveq2 7456 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2423eleq1d 2829 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴))
2522, 24rspc2v 3646 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴))
2620, 25syl5com 31 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴))
27263impib 1116 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴)
28 issubrng2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
2928subgss 19167 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴𝐵)
308, 29syl 17 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴𝐵)
3130sseld 4007 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢𝐴𝑢𝐵))
3230sseld 4007 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣𝐴𝑣𝐵))
3330sseld 4007 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤𝐴𝑤𝐵))
3431, 32, 333anim123d 1443 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3534imp 406 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
3628, 2rngass 20186 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
3736adantlr 714 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
3835, 37syldan 590 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
3928, 12, 2rngdi 20187 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4039adantlr 714 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4135, 40syldan 590 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4228, 12, 2rngdir 20188 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4342adantlr 714 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4435, 43syldan 590 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4511, 14, 16, 19, 27, 38, 41, 44isrngd 20200 . . . 4 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Rng)
4628issubrng 20573 . . . 4 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
477, 45, 30, 46syl3anbrc 1343 . . 3 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅))
4847ex 412 . 2 (𝑅 ∈ Rng → ((𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRng‘𝑅)))
496, 48impbid2 226 1 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  SubGrpcsubg 19160  Abelcabl 19823  Rngcrng 20179  SubRngcsubrng 20571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-mgm 18678  df-sgrp 18757  df-grp 18976  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-subrng 20572
This theorem is referenced by:  opprsubrng  20585  subrngint  20586  rhmimasubrng  20592  cntzsubrng  20593  pzriprnglem5  21519
  Copyright terms: Public domain W3C validator