Step | Hyp | Ref
| Expression |
1 | | subrngsubg 20444 |
. . 3
⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
2 | | issubrng2.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
3 | 2 | subrngmcl 20449 |
. . . . 5
⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
4 | 3 | 3expb 1119 |
. . . 4
⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 · 𝑦) ∈ 𝐴) |
5 | 4 | ralrimivva 3199 |
. . 3
⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
6 | 1, 5 | jca 511 |
. 2
⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) |
7 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Rng) |
8 | | simprl 768 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅)) |
9 | | eqid 2731 |
. . . . . . 7
⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) |
10 | 9 | subgbas 19050 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
11 | 8, 10 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
12 | | eqid 2731 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
13 | 9, 12 | ressplusg 17242 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘(𝑅
↾s 𝐴))) |
14 | 8, 13 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝐴))) |
15 | 9, 2 | ressmulr 17259 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → · =
(.r‘(𝑅
↾s 𝐴))) |
16 | 8, 15 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · =
(.r‘(𝑅
↾s 𝐴))) |
17 | | rngabl 20053 |
. . . . . 6
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
18 | 9 | subgabl 19749 |
. . . . . 6
⊢ ((𝑅 ∈ Abel ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝑅 ↾s 𝐴) ∈ Abel) |
19 | 17, 8, 18 | syl2an2r 682 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Abel) |
20 | | simprr 770 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
21 | | oveq1 7419 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
22 | 21 | eleq1d 2817 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴)) |
23 | | oveq2 7420 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
24 | 23 | eleq1d 2817 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴)) |
25 | 22, 24 | rspc2v 3622 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴)) |
26 | 20, 25 | syl5com 31 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴)) |
27 | 26 | 3impib 1115 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴) |
28 | | issubrng2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
29 | 28 | subgss 19047 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ⊆ 𝐵) |
30 | 8, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
31 | 30 | sseld 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵)) |
32 | 30 | sseld 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵)) |
33 | 30 | sseld 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵)) |
34 | 31, 32, 33 | 3anim123d 1442 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
35 | 34 | imp 406 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
36 | 28, 2 | rngass 20057 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
37 | 36 | adantlr 712 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
38 | 35, 37 | syldan 590 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
39 | 28, 12, 2 | rngdi 20058 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
40 | 39 | adantlr 712 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
41 | 35, 40 | syldan 590 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
42 | 28, 12, 2 | rngdir 20059 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
43 | 42 | adantlr 712 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
44 | 35, 43 | syldan 590 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
45 | 11, 14, 16, 19, 27, 38, 41, 44 | isrngd 20071 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Rng) |
46 | 28 | issubrng 20439 |
. . . 4
⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) |
47 | 7, 45, 30, 46 | syl3anbrc 1342 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅)) |
48 | 47 | ex 412 |
. 2
⊢ (𝑅 ∈ Rng → ((𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRng‘𝑅))) |
49 | 6, 48 | impbid2 225 |
1
⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) |