| Step | Hyp | Ref
| Expression |
| 1 | | subrngsubg 20553 |
. . 3
⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| 2 | | issubrng2.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 3 | 2 | subrngmcl 20558 |
. . . . 5
⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| 4 | 3 | 3expb 1120 |
. . . 4
⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 · 𝑦) ∈ 𝐴) |
| 5 | 4 | ralrimivva 3201 |
. . 3
⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 6 | 1, 5 | jca 511 |
. 2
⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) |
| 7 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Rng) |
| 8 | | simprl 770 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅)) |
| 9 | | eqid 2736 |
. . . . . . 7
⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) |
| 10 | 9 | subgbas 19149 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 11 | 8, 10 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 12 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 13 | 9, 12 | ressplusg 17335 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘(𝑅
↾s 𝐴))) |
| 14 | 8, 13 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝐴))) |
| 15 | 9, 2 | ressmulr 17352 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → · =
(.r‘(𝑅
↾s 𝐴))) |
| 16 | 8, 15 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · =
(.r‘(𝑅
↾s 𝐴))) |
| 17 | | rngabl 20153 |
. . . . . 6
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 18 | 9 | subgabl 19855 |
. . . . . 6
⊢ ((𝑅 ∈ Abel ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝑅 ↾s 𝐴) ∈ Abel) |
| 19 | 17, 8, 18 | syl2an2r 685 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Abel) |
| 20 | | simprr 772 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 21 | | oveq1 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
| 22 | 21 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴)) |
| 23 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
| 24 | 23 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴)) |
| 25 | 22, 24 | rspc2v 3632 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴)) |
| 26 | 20, 25 | syl5com 31 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴)) |
| 27 | 26 | 3impib 1116 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴) |
| 28 | | issubrng2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 29 | 28 | subgss 19146 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ⊆ 𝐵) |
| 30 | 8, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
| 31 | 30 | sseld 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵)) |
| 32 | 30 | sseld 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵)) |
| 33 | 30 | sseld 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵)) |
| 34 | 31, 32, 33 | 3anim123d 1444 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
| 35 | 34 | imp 406 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
| 36 | 28, 2 | rngass 20157 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
| 37 | 36 | adantlr 715 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
| 38 | 35, 37 | syldan 591 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
| 39 | 28, 12, 2 | rngdi 20158 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
| 40 | 39 | adantlr 715 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
| 41 | 35, 40 | syldan 591 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
| 42 | 28, 12, 2 | rngdir 20159 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
| 43 | 42 | adantlr 715 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
| 44 | 35, 43 | syldan 591 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
| 45 | 11, 14, 16, 19, 27, 38, 41, 44 | isrngd 20171 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Rng) |
| 46 | 28 | issubrng 20548 |
. . . 4
⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) |
| 47 | 7, 45, 30, 46 | syl3anbrc 1343 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅)) |
| 48 | 47 | ex 412 |
. 2
⊢ (𝑅 ∈ Rng → ((𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRng‘𝑅))) |
| 49 | 6, 48 | impbid2 226 |
1
⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) |