![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inawina | Structured version Visualization version GIF version |
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
inawina | ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfon 10199 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
2 | eleq1 2822 | . . . . 5 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 232 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | 3 | 3ad2ant2 1135 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → 𝐴 ∈ On) |
5 | idd 24 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ≠ ∅ → 𝐴 ≠ ∅)) | |
6 | idd 24 | . . . 4 ⊢ (𝐴 ∈ On → ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴)) | |
7 | inawinalem 10633 | . . . 4 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
8 | 5, 6, 7 | 3anim123d 1444 | . . 3 ⊢ (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
9 | 4, 8 | mpcom 38 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
10 | elina 10631 | . 2 ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) | |
11 | elwina 10630 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4286 𝒫 cpw 4564 class class class wbr 5109 Oncon0 6321 ‘cfv 6500 ≺ csdm 8888 cfccf 9881 Inaccwcwina 10626 Inacccina 10627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-card 9883 df-cf 9885 df-wina 10628 df-ina 10629 |
This theorem is referenced by: gchina 10643 inar1 10719 inatsk 10722 tskuni 10727 grur1a 10763 grur1 10764 inaprc 10780 inaex 42669 gruex 42670 |
Copyright terms: Public domain | W3C validator |