Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inawina | Structured version Visualization version GIF version |
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
inawina | ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfon 10039 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
2 | eleq1 2821 | . . . . 5 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 232 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | 3 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → 𝐴 ∈ On) |
5 | idd 24 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ≠ ∅ → 𝐴 ≠ ∅)) | |
6 | idd 24 | . . . 4 ⊢ (𝐴 ∈ On → ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴)) | |
7 | inawinalem 10473 | . . . 4 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
8 | 5, 6, 7 | 3anim123d 1441 | . . 3 ⊢ (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
9 | 4, 8 | mpcom 38 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
10 | elina 10471 | . 2 ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) | |
11 | elwina 10470 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
12 | 9, 10, 11 | 3imtr4i 291 | 1 ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∅c0 4259 𝒫 cpw 4536 class class class wbr 5077 Oncon0 6270 ‘cfv 6447 ≺ csdm 8752 cfccf 9723 Inaccwcwina 10466 Inacccina 10467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-card 9725 df-cf 9727 df-wina 10468 df-ina 10469 |
This theorem is referenced by: gchina 10483 inar1 10559 inatsk 10562 tskuni 10567 grur1a 10603 grur1 10604 inaprc 10620 inaex 41939 gruex 41940 |
Copyright terms: Public domain | W3C validator |