![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inawina | Structured version Visualization version GIF version |
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
inawina | ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfon 10293 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
2 | eleq1 2827 | . . . . 5 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On)) | |
3 | 1, 2 | mpbii 233 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ On) |
4 | 3 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → 𝐴 ∈ On) |
5 | idd 24 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ≠ ∅ → 𝐴 ≠ ∅)) | |
6 | idd 24 | . . . 4 ⊢ (𝐴 ∈ On → ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴)) | |
7 | inawinalem 10727 | . . . 4 ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
8 | 5, 6, 7 | 3anim123d 1442 | . . 3 ⊢ (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
9 | 4, 8 | mpcom 38 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
10 | elina 10725 | . 2 ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) | |
11 | elwina 10724 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 Oncon0 6386 ‘cfv 6563 ≺ csdm 8983 cfccf 9975 Inaccwcwina 10720 Inacccina 10721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-card 9977 df-cf 9979 df-wina 10722 df-ina 10723 |
This theorem is referenced by: gchina 10737 inar1 10813 inatsk 10816 tskuni 10821 grur1a 10857 grur1 10858 inaprc 10874 inaex 44293 gruex 44294 |
Copyright terms: Public domain | W3C validator |