MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawina Structured version   Visualization version   GIF version

Theorem inawina 10714
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
inawina (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)

Proof of Theorem inawina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfon 10279 . . . . 5 (cf‘𝐴) ∈ On
2 eleq1 2817 . . . . 5 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 232 . . . 4 ((cf‘𝐴) = 𝐴𝐴 ∈ On)
433ad2ant2 1132 . . 3 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ On)
5 idd 24 . . . 4 (𝐴 ∈ On → (𝐴 ≠ ∅ → 𝐴 ≠ ∅))
6 idd 24 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴))
7 inawinalem 10713 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
85, 6, 73anim123d 1440 . . 3 (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
94, 8mpcom 38 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
10 elina 10711 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
11 elwina 10710 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
129, 10, 113imtr4i 292 1 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  c0 4323  𝒫 cpw 4603   class class class wbr 5148  Oncon0 6369  cfv 6548  csdm 8963  cfccf 9961  Inaccwcwina 10706  Inacccina 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-card 9963  df-cf 9965  df-wina 10708  df-ina 10709
This theorem is referenced by:  gchina  10723  inar1  10799  inatsk  10802  tskuni  10807  grur1a  10843  grur1  10844  inaprc  10860  inaex  43734  gruex  43735
  Copyright terms: Public domain W3C validator