MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawina Structured version   Visualization version   GIF version

Theorem inawina 10643
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
inawina (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)

Proof of Theorem inawina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfon 10208 . . . . 5 (cf‘𝐴) ∈ On
2 eleq1 2816 . . . . 5 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 233 . . . 4 ((cf‘𝐴) = 𝐴𝐴 ∈ On)
433ad2ant2 1134 . . 3 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ On)
5 idd 24 . . . 4 (𝐴 ∈ On → (𝐴 ≠ ∅ → 𝐴 ≠ ∅))
6 idd 24 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴))
7 inawinalem 10642 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
85, 6, 73anim123d 1445 . . 3 (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
94, 8mpcom 38 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
10 elina 10640 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
11 elwina 10639 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
129, 10, 113imtr4i 292 1 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296  𝒫 cpw 4563   class class class wbr 5107  Oncon0 6332  cfv 6511  csdm 8917  cfccf 9890  Inaccwcwina 10635  Inacccina 10636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892  df-cf 9894  df-wina 10637  df-ina 10638
This theorem is referenced by:  gchina  10652  inar1  10728  inatsk  10731  tskuni  10736  grur1a  10772  grur1  10773  inaprc  10789  inaex  44286  gruex  44287
  Copyright terms: Public domain W3C validator