MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawina Structured version   Visualization version   GIF version

Theorem inawina 10101
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
inawina (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)

Proof of Theorem inawina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfon 9666 . . . . 5 (cf‘𝐴) ∈ On
2 eleq1 2877 . . . . 5 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 236 . . . 4 ((cf‘𝐴) = 𝐴𝐴 ∈ On)
433ad2ant2 1131 . . 3 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ On)
5 idd 24 . . . 4 (𝐴 ∈ On → (𝐴 ≠ ∅ → 𝐴 ≠ ∅))
6 idd 24 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴))
7 inawinalem 10100 . . . 4 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
85, 6, 73anim123d 1440 . . 3 (𝐴 ∈ On → ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
94, 8mpcom 38 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
10 elina 10098 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
11 elwina 10097 . 2 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
129, 10, 113imtr4i 295 1 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  c0 4243  𝒫 cpw 4497   class class class wbr 5030  Oncon0 6159  cfv 6324  csdm 8491  cfccf 9350  Inaccwcwina 10093  Inacccina 10094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-wrecs 7930  df-recs 7991  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-card 9352  df-cf 9354  df-wina 10095  df-ina 10096
This theorem is referenced by:  gchina  10110  inar1  10186  inatsk  10189  tskuni  10194  grur1a  10230  grur1  10231  inaprc  10247  inaex  41005  gruex  41006
  Copyright terms: Public domain W3C validator