Step | Hyp | Ref
| Expression |
1 | | subrgsubg 20361 |
. . 3
β’ (π΄ β (SubRingβπ
) β π΄ β (SubGrpβπ
)) |
2 | | issubrg2.o |
. . . 4
β’ 1 =
(1rβπ
) |
3 | 2 | subrg1cl 20363 |
. . 3
β’ (π΄ β (SubRingβπ
) β 1 β π΄) |
4 | | issubrg2.t |
. . . . . 6
β’ Β· =
(.rβπ
) |
5 | 4 | subrgmcl 20367 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π΄ β§ π¦ β π΄) β (π₯ Β· π¦) β π΄) |
6 | 5 | 3expb 1120 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ (π₯ β π΄ β§ π¦ β π΄)) β (π₯ Β· π¦) β π΄) |
7 | 6 | ralrimivva 3200 |
. . 3
β’ (π΄ β (SubRingβπ
) β βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄) |
8 | 1, 3, 7 | 3jca 1128 |
. 2
β’ (π΄ β (SubRingβπ
) β (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) |
9 | | simpl 483 |
. . . 4
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β π
β Ring) |
10 | | simpr1 1194 |
. . . . . 6
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β π΄ β (SubGrpβπ
)) |
11 | | eqid 2732 |
. . . . . . 7
β’ (π
βΎs π΄) = (π
βΎs π΄) |
12 | 11 | subgbas 19004 |
. . . . . 6
β’ (π΄ β (SubGrpβπ
) β π΄ = (Baseβ(π
βΎs π΄))) |
13 | 10, 12 | syl 17 |
. . . . 5
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β π΄ = (Baseβ(π
βΎs π΄))) |
14 | | eqid 2732 |
. . . . . . 7
β’
(+gβπ
) = (+gβπ
) |
15 | 11, 14 | ressplusg 17231 |
. . . . . 6
β’ (π΄ β (SubGrpβπ
) β
(+gβπ
) =
(+gβ(π
βΎs π΄))) |
16 | 10, 15 | syl 17 |
. . . . 5
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (+gβπ
) = (+gβ(π
βΎs π΄))) |
17 | 11, 4 | ressmulr 17248 |
. . . . . 6
β’ (π΄ β (SubGrpβπ
) β Β· =
(.rβ(π
βΎs π΄))) |
18 | 10, 17 | syl 17 |
. . . . 5
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β Β· =
(.rβ(π
βΎs π΄))) |
19 | 11 | subggrp 19003 |
. . . . . 6
β’ (π΄ β (SubGrpβπ
) β (π
βΎs π΄) β Grp) |
20 | 10, 19 | syl 17 |
. . . . 5
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (π
βΎs π΄) β Grp) |
21 | | simpr3 1196 |
. . . . . . 7
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄) |
22 | | oveq1 7412 |
. . . . . . . . 9
β’ (π₯ = π’ β (π₯ Β· π¦) = (π’ Β· π¦)) |
23 | 22 | eleq1d 2818 |
. . . . . . . 8
β’ (π₯ = π’ β ((π₯ Β· π¦) β π΄ β (π’ Β· π¦) β π΄)) |
24 | | oveq2 7413 |
. . . . . . . . 9
β’ (π¦ = π£ β (π’ Β· π¦) = (π’ Β· π£)) |
25 | 24 | eleq1d 2818 |
. . . . . . . 8
β’ (π¦ = π£ β ((π’ Β· π¦) β π΄ β (π’ Β· π£) β π΄)) |
26 | 23, 25 | rspc2v 3621 |
. . . . . . 7
β’ ((π’ β π΄ β§ π£ β π΄) β (βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄ β (π’ Β· π£) β π΄)) |
27 | 21, 26 | syl5com 31 |
. . . . . 6
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β ((π’ β π΄ β§ π£ β π΄) β (π’ Β· π£) β π΄)) |
28 | 27 | 3impib 1116 |
. . . . 5
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ π’ β π΄ β§ π£ β π΄) β (π’ Β· π£) β π΄) |
29 | | issubrg2.b |
. . . . . . . . . . 11
β’ π΅ = (Baseβπ
) |
30 | 29 | subgss 19001 |
. . . . . . . . . 10
β’ (π΄ β (SubGrpβπ
) β π΄ β π΅) |
31 | 10, 30 | syl 17 |
. . . . . . . . 9
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β π΄ β π΅) |
32 | 31 | sseld 3980 |
. . . . . . . 8
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (π’ β π΄ β π’ β π΅)) |
33 | 31 | sseld 3980 |
. . . . . . . 8
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (π£ β π΄ β π£ β π΅)) |
34 | 31 | sseld 3980 |
. . . . . . . 8
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (π€ β π΄ β π€ β π΅)) |
35 | 32, 33, 34 | 3anim123d 1443 |
. . . . . . 7
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β ((π’ β π΄ β§ π£ β π΄ β§ π€ β π΄) β (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅))) |
36 | 35 | imp 407 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΄ β§ π£ β π΄ β§ π€ β π΄)) β (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) |
37 | 29, 4 | ringass 20069 |
. . . . . . 7
β’ ((π
β Ring β§ (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) β ((π’ Β· π£) Β· π€) = (π’ Β· (π£ Β· π€))) |
38 | 37 | adantlr 713 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) β ((π’ Β· π£) Β· π€) = (π’ Β· (π£ Β· π€))) |
39 | 36, 38 | syldan 591 |
. . . . 5
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΄ β§ π£ β π΄ β§ π€ β π΄)) β ((π’ Β· π£) Β· π€) = (π’ Β· (π£ Β· π€))) |
40 | 29, 14, 4 | ringdi 20074 |
. . . . . . 7
β’ ((π
β Ring β§ (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) β (π’ Β· (π£(+gβπ
)π€)) = ((π’ Β· π£)(+gβπ
)(π’ Β· π€))) |
41 | 40 | adantlr 713 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) β (π’ Β· (π£(+gβπ
)π€)) = ((π’ Β· π£)(+gβπ
)(π’ Β· π€))) |
42 | 36, 41 | syldan 591 |
. . . . 5
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΄ β§ π£ β π΄ β§ π€ β π΄)) β (π’ Β· (π£(+gβπ
)π€)) = ((π’ Β· π£)(+gβπ
)(π’ Β· π€))) |
43 | 29, 14, 4 | ringdir 20075 |
. . . . . . 7
β’ ((π
β Ring β§ (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) β ((π’(+gβπ
)π£) Β· π€) = ((π’ Β· π€)(+gβπ
)(π£ Β· π€))) |
44 | 43 | adantlr 713 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΅ β§ π£ β π΅ β§ π€ β π΅)) β ((π’(+gβπ
)π£) Β· π€) = ((π’ Β· π€)(+gβπ
)(π£ Β· π€))) |
45 | 36, 44 | syldan 591 |
. . . . 5
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ (π’ β π΄ β§ π£ β π΄ β§ π€ β π΄)) β ((π’(+gβπ
)π£) Β· π€) = ((π’ Β· π€)(+gβπ
)(π£ Β· π€))) |
46 | | simpr2 1195 |
. . . . 5
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β 1 β π΄) |
47 | 32 | imp 407 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ π’ β π΄) β π’ β π΅) |
48 | 29, 4, 2 | ringlidm 20079 |
. . . . . . 7
β’ ((π
β Ring β§ π’ β π΅) β ( 1 Β· π’) = π’) |
49 | 48 | adantlr 713 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ π’ β π΅) β ( 1 Β· π’) = π’) |
50 | 47, 49 | syldan 591 |
. . . . 5
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ π’ β π΄) β ( 1 Β· π’) = π’) |
51 | 29, 4, 2 | ringridm 20080 |
. . . . . . 7
β’ ((π
β Ring β§ π’ β π΅) β (π’ Β· 1 ) = π’) |
52 | 51 | adantlr 713 |
. . . . . 6
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ π’ β π΅) β (π’ Β· 1 ) = π’) |
53 | 47, 52 | syldan 591 |
. . . . 5
β’ (((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β§ π’ β π΄) β (π’ Β· 1 ) = π’) |
54 | 13, 16, 18, 20, 28, 39, 42, 45, 46, 50, 53 | isringd 20098 |
. . . 4
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (π
βΎs π΄) β Ring) |
55 | 31, 46 | jca 512 |
. . . 4
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β (π΄ β π΅ β§ 1 β π΄)) |
56 | 29, 2 | issubrg 20355 |
. . . 4
β’ (π΄ β (SubRingβπ
) β ((π
β Ring β§ (π
βΎs π΄) β Ring) β§ (π΄ β π΅ β§ 1 β π΄))) |
57 | 9, 54, 55, 56 | syl21anbrc 1344 |
. . 3
β’ ((π
β Ring β§ (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄)) β π΄ β (SubRingβπ
)) |
58 | 57 | ex 413 |
. 2
β’ (π
β Ring β ((π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄) β π΄ β (SubRingβπ
))) |
59 | 8, 58 | impbid2 225 |
1
β’ (π
β Ring β (π΄ β (SubRingβπ
) β (π΄ β (SubGrpβπ
) β§ 1 β π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ Β· π¦) β π΄))) |