MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg2 Structured version   Visualization version   GIF version

Theorem issubrg2 20375
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b 𝐡 = (Baseβ€˜π‘…)
issubrg2.o 1 = (1rβ€˜π‘…)
issubrg2.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
issubrg2 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝑅,𝑦   π‘₯, Β· ,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   1 (π‘₯,𝑦)

Proof of Theorem issubrg2
Dummy variables 𝑣 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 20361 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
2 issubrg2.o . . . 4 1 = (1rβ€˜π‘…)
32subrg1cl 20363 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 ∈ 𝐴)
4 issubrg2.t . . . . . 6 Β· = (.rβ€˜π‘…)
54subrgmcl 20367 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ Β· 𝑦) ∈ 𝐴)
653expb 1120 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ Β· 𝑦) ∈ 𝐴)
76ralrimivva 3200 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)
81, 3, 73jca 1128 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴))
9 simpl 483 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝑅 ∈ Ring)
10 simpr1 1194 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
11 eqid 2732 . . . . . . 7 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
1211subgbas 19004 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
1310, 12syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
14 eqid 2732 . . . . . . 7 (+gβ€˜π‘…) = (+gβ€˜π‘…)
1511, 14ressplusg 17231 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜(𝑅 β†Ύs 𝐴)))
1610, 15syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (+gβ€˜π‘…) = (+gβ€˜(𝑅 β†Ύs 𝐴)))
1711, 4ressmulr 17248 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ Β· = (.rβ€˜(𝑅 β†Ύs 𝐴)))
1810, 17syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ Β· = (.rβ€˜(𝑅 β†Ύs 𝐴)))
1911subggrp 19003 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
2010, 19syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
21 simpr3 1196 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)
22 oveq1 7412 . . . . . . . . 9 (π‘₯ = 𝑒 β†’ (π‘₯ Β· 𝑦) = (𝑒 Β· 𝑦))
2322eleq1d 2818 . . . . . . . 8 (π‘₯ = 𝑒 β†’ ((π‘₯ Β· 𝑦) ∈ 𝐴 ↔ (𝑒 Β· 𝑦) ∈ 𝐴))
24 oveq2 7413 . . . . . . . . 9 (𝑦 = 𝑣 β†’ (𝑒 Β· 𝑦) = (𝑒 Β· 𝑣))
2524eleq1d 2818 . . . . . . . 8 (𝑦 = 𝑣 β†’ ((𝑒 Β· 𝑦) ∈ 𝐴 ↔ (𝑒 Β· 𝑣) ∈ 𝐴))
2623, 25rspc2v 3621 . . . . . . 7 ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴 β†’ (𝑒 Β· 𝑣) ∈ 𝐴))
2721, 26syl5com 31 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (𝑒 Β· 𝑣) ∈ 𝐴))
28273impib 1116 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (𝑒 Β· 𝑣) ∈ 𝐴)
29 issubrg2.b . . . . . . . . . . 11 𝐡 = (Baseβ€˜π‘…)
3029subgss 19001 . . . . . . . . . 10 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 βŠ† 𝐡)
3110, 30syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 βŠ† 𝐡)
3231sseld 3980 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑒 ∈ 𝐴 β†’ 𝑒 ∈ 𝐡))
3331sseld 3980 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑣 ∈ 𝐴 β†’ 𝑣 ∈ 𝐡))
3431sseld 3980 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑀 ∈ 𝐴 β†’ 𝑀 ∈ 𝐡))
3532, 33, 343anim123d 1443 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴) β†’ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)))
3635imp 407 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡))
3729, 4ringass 20069 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
3837adantlr 713 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
3936, 38syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
4029, 14, 4ringdi 20074 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4140adantlr 713 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4236, 41syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4329, 14, 4ringdir 20075 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
4443adantlr 713 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
4536, 44syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
46 simpr2 1195 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 1 ∈ 𝐴)
4732imp 407 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ 𝑒 ∈ 𝐡)
4829, 4, 2ringlidm 20079 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑒 ∈ 𝐡) β†’ ( 1 Β· 𝑒) = 𝑒)
4948adantlr 713 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐡) β†’ ( 1 Β· 𝑒) = 𝑒)
5047, 49syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ ( 1 Β· 𝑒) = 𝑒)
5129, 4, 2ringridm 20080 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 Β· 1 ) = 𝑒)
5251adantlr 713 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 Β· 1 ) = 𝑒)
5347, 52syldan 591 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ (𝑒 Β· 1 ) = 𝑒)
5413, 16, 18, 20, 28, 39, 42, 45, 46, 50, 53isringd 20098 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
5531, 46jca 512 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))
5629, 2issubrg 20355 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
579, 54, 55, 56syl21anbrc 1344 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 ∈ (SubRingβ€˜π‘…))
5857ex 413 . 2 (𝑅 ∈ Ring β†’ ((𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴) β†’ 𝐴 ∈ (SubRingβ€˜π‘…)))
598, 58impbid2 225 1 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  +gcplusg 17193  .rcmulr 17194  Grpcgrp 18815  SubGrpcsubg 18994  1rcur 19998  Ringcrg 20049  SubRingcsubrg 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353
This theorem is referenced by:  opprsubrg  20376  subrgint  20378  issubrg3  20384  issubrgd  20803  cnsubrglem  20987  mplsubrg  21555  mplind  21622  dmatsrng  21994  scmatsrng  22013  scmatsrng1  22016  cpmatsrgpmat  22214
  Copyright terms: Public domain W3C validator