MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlrng Structured version   Visualization version   GIF version

Theorem rnglidlrng 21257
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
rnglidlrng ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)

Proof of Theorem rnglidlrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 20152 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
213ad2ant1 1134 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
3 simp3 1139 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ (SubGrp‘𝑅))
4 rnglidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
54subgabl 19854 . . 3 ((𝑅 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
62, 3, 5syl2anc 584 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
7 eqid 2737 . . . 4 (0g𝑅) = (0g𝑅)
87subg0cl 19152 . . 3 (𝑈 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑈)
9 rnglidlabl.l . . . 4 𝐿 = (LIdeal‘𝑅)
109, 4, 7rnglidlmsgrp 21256 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿 ∧ (0g𝑅) ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
118, 10syl3an3 1166 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (mulGrp‘𝐼) ∈ Smgrp)
12 simpl1 1192 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Rng)
139, 4lidlssbas 21223 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3982 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1513sseld 3982 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
1613sseld 3982 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
1714, 15, 163anim123d 1445 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
18173ad2ant2 1135 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1918imp 406 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
20 eqid 2737 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2737 . . . . . 6 (+g𝑅) = (+g𝑅)
22 eqid 2737 . . . . . 6 (.r𝑅) = (.r𝑅)
2320, 21, 22rngdi 20157 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2412, 19, 23syl2anc 584 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2520, 21, 22rngdir 20158 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
2612, 19, 25syl2anc 584 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
274, 22ressmulr 17351 . . . . . . . . . 10 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2827eqcomd 2743 . . . . . . . . 9 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
29 eqidd 2738 . . . . . . . . 9 (𝑈𝐿𝑎 = 𝑎)
304, 21ressplusg 17334 . . . . . . . . . . 11 (𝑈𝐿 → (+g𝑅) = (+g𝐼))
3130eqcomd 2743 . . . . . . . . . 10 (𝑈𝐿 → (+g𝐼) = (+g𝑅))
3231oveqd 7448 . . . . . . . . 9 (𝑈𝐿 → (𝑏(+g𝐼)𝑐) = (𝑏(+g𝑅)𝑐))
3328, 29, 32oveq123d 7452 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)))
3428oveqd 7448 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3528oveqd 7448 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑐) = (𝑎(.r𝑅)𝑐))
3631, 34, 35oveq123d 7452 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
3733, 36eqeq12d 2753 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ↔ (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐))))
3831oveqd 7448 . . . . . . . . 9 (𝑈𝐿 → (𝑎(+g𝐼)𝑏) = (𝑎(+g𝑅)𝑏))
39 eqidd 2738 . . . . . . . . 9 (𝑈𝐿𝑐 = 𝑐)
4028, 38, 39oveq123d 7452 . . . . . . . 8 (𝑈𝐿 → ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐))
4128oveqd 7448 . . . . . . . . 9 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
4231, 35, 41oveq123d 7452 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
4340, 42eqeq12d 2753 . . . . . . 7 (𝑈𝐿 → (((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
4437, 43anbi12d 632 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
45443ad2ant2 1135 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4645adantr 480 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4724, 26, 46mpbir2and 713 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
4847ralrimivvva 3205 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
49 eqid 2737 . . 3 (Base‘𝐼) = (Base‘𝐼)
50 eqid 2737 . . 3 (mulGrp‘𝐼) = (mulGrp‘𝐼)
51 eqid 2737 . . 3 (+g𝐼) = (+g𝐼)
52 eqid 2737 . . 3 (.r𝐼) = (.r𝐼)
5349, 50, 51, 52isrng 20151 . 2 (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧ (mulGrp‘𝐼) ∈ Smgrp ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)))))
546, 11, 48, 53syl3anbrc 1344 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  +gcplusg 17297  .rcmulr 17298  0gc0g 17484  Smgrpcsgrp 18731  SubGrpcsubg 19138  Abelcabl 19799  mulGrpcmgp 20137  Rngcrng 20149  LIdealclidl 21216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-lss 20930  df-sra 21172  df-rgmod 21173  df-lidl 21218
This theorem is referenced by:  rng2idlsubgsubrng  21278  lidlrng  48149
  Copyright terms: Public domain W3C validator