MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlrng Structured version   Visualization version   GIF version

Theorem rnglidlrng 21157
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
rnglidlrng ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)

Proof of Theorem rnglidlrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 20064 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
213ad2ant1 1133 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
3 simp3 1138 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ (SubGrp‘𝑅))
4 rnglidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
54subgabl 19766 . . 3 ((𝑅 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
62, 3, 5syl2anc 584 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
7 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
87subg0cl 19066 . . 3 (𝑈 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑈)
9 rnglidlabl.l . . . 4 𝐿 = (LIdeal‘𝑅)
109, 4, 7rnglidlmsgrp 21156 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿 ∧ (0g𝑅) ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
118, 10syl3an3 1165 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (mulGrp‘𝐼) ∈ Smgrp)
12 simpl1 1192 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Rng)
139, 4lidlssbas 21123 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3945 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1513sseld 3945 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
1613sseld 3945 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
1714, 15, 163anim123d 1445 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
18173ad2ant2 1134 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1918imp 406 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
20 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
22 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
2320, 21, 22rngdi 20069 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2412, 19, 23syl2anc 584 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2520, 21, 22rngdir 20070 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
2612, 19, 25syl2anc 584 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
274, 22ressmulr 17270 . . . . . . . . . 10 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2827eqcomd 2735 . . . . . . . . 9 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
29 eqidd 2730 . . . . . . . . 9 (𝑈𝐿𝑎 = 𝑎)
304, 21ressplusg 17254 . . . . . . . . . . 11 (𝑈𝐿 → (+g𝑅) = (+g𝐼))
3130eqcomd 2735 . . . . . . . . . 10 (𝑈𝐿 → (+g𝐼) = (+g𝑅))
3231oveqd 7404 . . . . . . . . 9 (𝑈𝐿 → (𝑏(+g𝐼)𝑐) = (𝑏(+g𝑅)𝑐))
3328, 29, 32oveq123d 7408 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)))
3428oveqd 7404 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3528oveqd 7404 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑐) = (𝑎(.r𝑅)𝑐))
3631, 34, 35oveq123d 7408 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
3733, 36eqeq12d 2745 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ↔ (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐))))
3831oveqd 7404 . . . . . . . . 9 (𝑈𝐿 → (𝑎(+g𝐼)𝑏) = (𝑎(+g𝑅)𝑏))
39 eqidd 2730 . . . . . . . . 9 (𝑈𝐿𝑐 = 𝑐)
4028, 38, 39oveq123d 7408 . . . . . . . 8 (𝑈𝐿 → ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐))
4128oveqd 7404 . . . . . . . . 9 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
4231, 35, 41oveq123d 7408 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
4340, 42eqeq12d 2745 . . . . . . 7 (𝑈𝐿 → (((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
4437, 43anbi12d 632 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
45443ad2ant2 1134 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4645adantr 480 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4724, 26, 46mpbir2and 713 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
4847ralrimivvva 3183 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
49 eqid 2729 . . 3 (Base‘𝐼) = (Base‘𝐼)
50 eqid 2729 . . 3 (mulGrp‘𝐼) = (mulGrp‘𝐼)
51 eqid 2729 . . 3 (+g𝐼) = (+g𝐼)
52 eqid 2729 . . 3 (.r𝐼) = (.r𝐼)
5349, 50, 51, 52isrng 20063 . 2 (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧ (mulGrp‘𝐼) ∈ Smgrp ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)))))
546, 11, 48, 53syl3anbrc 1344 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Smgrpcsgrp 18645  SubGrpcsubg 19052  Abelcabl 19711  mulGrpcmgp 20049  Rngcrng 20061  LIdealclidl 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118
This theorem is referenced by:  rng2idlsubgsubrng  21178  lidlrng  48221
  Copyright terms: Public domain W3C validator