Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosubdi Structured version   Visualization version   GIF version

Theorem rngosubdi 37946
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringsubdi.1 𝐺 = (1st𝑅)
ringsubdi.2 𝐻 = (2nd𝑅)
ringsubdi.3 𝑋 = ran 𝐺
ringsubdi.4 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
rngosubdi ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)))

Proof of Theorem rngosubdi
StepHypRef Expression
1 ringsubdi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringsubdi.3 . . . . 5 𝑋 = ran 𝐺
3 eqid 2730 . . . . 5 (inv‘𝐺) = (inv‘𝐺)
4 ringsubdi.4 . . . . 5 𝐷 = ( /𝑔𝐺)
51, 2, 3, 4rngosub 37931 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
653adant3r1 1183 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
76oveq2d 7406 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))))
8 ringsubdi.2 . . . . . . 7 𝐻 = (2nd𝑅)
91, 8, 2rngocl 37902 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
1093adant3r3 1185 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
111, 8, 2rngocl 37902 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
12113adant3r2 1184 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
1310, 12jca 511 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋))
141, 2, 3, 4rngosub 37931 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
15143expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
17 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐴𝑋𝐴𝑋))
18 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐵𝑋𝐵𝑋))
191, 2, 3rngonegcl 37928 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
2019ex 412 . . . . . . 7 (𝑅 ∈ RingOps → (𝐶𝑋 → ((inv‘𝐺)‘𝐶) ∈ 𝑋))
2117, 18, 203anim123d 1445 . . . . . 6 (𝑅 ∈ RingOps → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)))
2221imp 406 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋))
231, 8, 2rngodi 37905 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
2422, 23syldan 591 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
251, 8, 2, 3rngonegrmul 37945 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → ((inv‘𝐺)‘(𝐴𝐻𝐶)) = (𝐴𝐻((inv‘𝐺)‘𝐶)))
26253adant3r2 1184 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘(𝐴𝐻𝐶)) = (𝐴𝐻((inv‘𝐺)‘𝐶)))
2726oveq2d 7406 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
2824, 27eqtr4d 2768 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
2916, 28eqtr4d 2768 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))))
307, 29eqtr4d 2768 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5642  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  invcgn 30427   /𝑔 cgs 30428  RingOpscrngo 37895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868  df-rngo 37896
This theorem is referenced by:  dmncan1  38077
  Copyright terms: Public domain W3C validator