Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosubdi Structured version   Visualization version   GIF version

Theorem rngosubdi 37646
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringsubdi.1 𝐺 = (1st𝑅)
ringsubdi.2 𝐻 = (2nd𝑅)
ringsubdi.3 𝑋 = ran 𝐺
ringsubdi.4 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
rngosubdi ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)))

Proof of Theorem rngosubdi
StepHypRef Expression
1 ringsubdi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringsubdi.3 . . . . 5 𝑋 = ran 𝐺
3 eqid 2726 . . . . 5 (inv‘𝐺) = (inv‘𝐺)
4 ringsubdi.4 . . . . 5 𝐷 = ( /𝑔𝐺)
51, 2, 3, 4rngosub 37631 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
653adant3r1 1179 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
76oveq2d 7440 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))))
8 ringsubdi.2 . . . . . . 7 𝐻 = (2nd𝑅)
91, 8, 2rngocl 37602 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
1093adant3r3 1181 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
111, 8, 2rngocl 37602 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
12113adant3r2 1180 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
1310, 12jca 510 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋))
141, 2, 3, 4rngosub 37631 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
15143expb 1117 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
1613, 15syldan 589 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
17 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐴𝑋𝐴𝑋))
18 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐵𝑋𝐵𝑋))
191, 2, 3rngonegcl 37628 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
2019ex 411 . . . . . . 7 (𝑅 ∈ RingOps → (𝐶𝑋 → ((inv‘𝐺)‘𝐶) ∈ 𝑋))
2117, 18, 203anim123d 1440 . . . . . 6 (𝑅 ∈ RingOps → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)))
2221imp 405 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋))
231, 8, 2rngodi 37605 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
2422, 23syldan 589 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
251, 8, 2, 3rngonegrmul 37645 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → ((inv‘𝐺)‘(𝐴𝐻𝐶)) = (𝐴𝐻((inv‘𝐺)‘𝐶)))
26253adant3r2 1180 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘(𝐴𝐻𝐶)) = (𝐴𝐻((inv‘𝐺)‘𝐶)))
2726oveq2d 7440 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
2824, 27eqtr4d 2769 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
2916, 28eqtr4d 2769 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))))
307, 29eqtr4d 2769 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  ran crn 5683  cfv 6554  (class class class)co 7424  1st c1st 8001  2nd c2nd 8002  invcgn 30424   /𝑔 cgs 30425  RingOpscrngo 37595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-grpo 30426  df-gid 30427  df-ginv 30428  df-gdiv 30429  df-ablo 30478  df-ass 37544  df-exid 37546  df-mgmOLD 37550  df-sgrOLD 37562  df-mndo 37568  df-rngo 37596
This theorem is referenced by:  dmncan1  37777
  Copyright terms: Public domain W3C validator