Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . 5
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → 𝑥
∈ Inaccw) |
2 | | idd 24 |
. . . . . . 7
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → (𝑥 ≠ ∅ → 𝑥 ≠ ∅)) |
3 | | idd 24 |
. . . . . . 7
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → ((cf‘𝑥) = 𝑥 → (cf‘𝑥) = 𝑥)) |
4 | | pwfi 8923 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ Fin ↔ 𝒫
𝑦 ∈
Fin) |
5 | | isfinite 9340 |
. . . . . . . . . . . . . 14
⊢
(𝒫 𝑦 ∈
Fin ↔ 𝒫 𝑦
≺ ω) |
6 | | winainf 10381 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Inaccw →
ω ⊆ 𝑥) |
7 | | ssdomg 8741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Inaccw →
(ω ⊆ 𝑥 →
ω ≼ 𝑥)) |
8 | 6, 7 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ Inaccw →
ω ≼ 𝑥) |
9 | | sdomdomtr 8846 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝑦
≺ ω ∧ ω ≼ 𝑥) → 𝒫 𝑦 ≺ 𝑥) |
10 | 9 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (ω
≼ 𝑥 → (𝒫
𝑦 ≺ ω →
𝒫 𝑦 ≺ 𝑥)) |
11 | 8, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Inaccw →
(𝒫 𝑦 ≺
ω → 𝒫 𝑦
≺ 𝑥)) |
12 | 5, 11 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Inaccw →
(𝒫 𝑦 ∈ Fin
→ 𝒫 𝑦 ≺
𝑥)) |
13 | 4, 12 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Inaccw →
(𝑦 ∈ Fin →
𝒫 𝑦 ≺ 𝑥)) |
14 | 13 | ad3antlr 727 |
. . . . . . . . . . 11
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → (𝑦 ∈ Fin → 𝒫 𝑦 ≺ 𝑥)) |
15 | 14 | a1dd 50 |
. . . . . . . . . 10
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → (𝑦 ∈ Fin → (𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥))) |
16 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
17 | | simplll 771 |
. . . . . . . . . . . . . . 15
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → GCH =
V) |
18 | 16, 17 | eleqtrrid 2846 |
. . . . . . . . . . . . . 14
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑦 ∈ GCH) |
19 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ¬ 𝑦 ∈ Fin) |
20 | | gchinf 10344 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin) → ω
≼ 𝑦) |
21 | 18, 19, 20 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ω ≼ 𝑦) |
22 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
23 | 22, 17 | eleqtrrid 2846 |
. . . . . . . . . . . . 13
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑧 ∈ GCH) |
24 | | gchpwdom 10357 |
. . . . . . . . . . . . 13
⊢ ((ω
≼ 𝑦 ∧ 𝑦 ∈ GCH ∧ 𝑧 ∈ GCH) → (𝑦 ≺ 𝑧 ↔ 𝒫 𝑦 ≼ 𝑧)) |
25 | 21, 18, 23, 24 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦 ≺ 𝑧 ↔ 𝒫 𝑦 ≼ 𝑧)) |
26 | | winacard 10379 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Inaccw →
(card‘𝑥) = 𝑥) |
27 | | iscard 9664 |
. . . . . . . . . . . . . . . . . 18
⊢
((card‘𝑥) =
𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 𝑧 ≺ 𝑥)) |
28 | 27 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢
((card‘𝑥) =
𝑥 → ∀𝑧 ∈ 𝑥 𝑧 ≺ 𝑥) |
29 | 26, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Inaccw →
∀𝑧 ∈ 𝑥 𝑧 ≺ 𝑥) |
30 | 29 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) →
∀𝑧 ∈ 𝑥 𝑧 ≺ 𝑥) |
31 | 30 | r19.21bi 3132 |
. . . . . . . . . . . . . 14
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → 𝑧 ≺ 𝑥) |
32 | | domsdomtr 8848 |
. . . . . . . . . . . . . . 15
⊢
((𝒫 𝑦
≼ 𝑧 ∧ 𝑧 ≺ 𝑥) → 𝒫 𝑦 ≺ 𝑥) |
33 | 32 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ≺ 𝑥 → (𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥)) |
34 | 31, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → (𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥)) |
35 | 34 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝒫 𝑦 ≼ 𝑧 → 𝒫 𝑦 ≺ 𝑥)) |
36 | 25, 35 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥)) |
37 | 36 | expr 456 |
. . . . . . . . . 10
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → (¬ 𝑦 ∈ Fin → (𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥))) |
38 | 15, 37 | pm2.61d 179 |
. . . . . . . . 9
⊢ ((((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → (𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥)) |
39 | 38 | rexlimdva 3212 |
. . . . . . . 8
⊢ (((GCH =
V ∧ 𝑥 ∈
Inaccw) ∧ 𝑦
∈ 𝑥) →
(∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 → 𝒫 𝑦 ≺ 𝑥)) |
40 | 39 | ralimdva 3102 |
. . . . . . 7
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → (∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 → ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)) |
41 | 2, 3, 40 | 3anim123d 1441 |
. . . . . 6
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → ((𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧) → (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥))) |
42 | | elwina 10373 |
. . . . . 6
⊢ (𝑥 ∈ Inaccw ↔
(𝑥 ≠ ∅ ∧
(cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)) |
43 | | elina 10374 |
. . . . . 6
⊢ (𝑥 ∈ Inacc ↔ (𝑥 ≠ ∅ ∧
(cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)) |
44 | 41, 42, 43 | 3imtr4g 295 |
. . . . 5
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → (𝑥 ∈ Inaccw → 𝑥 ∈ Inacc)) |
45 | 1, 44 | mpd 15 |
. . . 4
⊢ ((GCH = V
∧ 𝑥 ∈
Inaccw) → 𝑥
∈ Inacc) |
46 | 45 | ex 412 |
. . 3
⊢ (GCH = V
→ (𝑥 ∈
Inaccw → 𝑥
∈ Inacc)) |
47 | | inawina 10377 |
. . 3
⊢ (𝑥 ∈ Inacc → 𝑥 ∈
Inaccw) |
48 | 46, 47 | impbid1 224 |
. 2
⊢ (GCH = V
→ (𝑥 ∈
Inaccw ↔ 𝑥
∈ Inacc)) |
49 | 48 | eqrdv 2736 |
1
⊢ (GCH = V
→ Inaccw = Inacc) |