MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Visualization version   GIF version

Theorem gchina 10557
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina (GCH = V → Inaccw = Inacc)

Proof of Theorem gchina
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inaccw)
2 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ≠ ∅ → 𝑥 ≠ ∅))
3 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((cf‘𝑥) = 𝑥 → (cf‘𝑥) = 𝑥))
4 pwfi 9044 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
5 isfinite 9510 . . . . . . . . . . . . . 14 (𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω)
6 winainf 10552 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ω ⊆ 𝑥)
7 ssdomg 8862 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → (ω ⊆ 𝑥 → ω ≼ 𝑥))
86, 7mpd 15 . . . . . . . . . . . . . . 15 (𝑥 ∈ Inaccw → ω ≼ 𝑥)
9 sdomdomtr 8976 . . . . . . . . . . . . . . . 16 ((𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥) → 𝒫 𝑦𝑥)
109expcom 414 . . . . . . . . . . . . . . 15 (ω ≼ 𝑥 → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
118, 10syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ Inaccw → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
125, 11biimtrid 241 . . . . . . . . . . . . 13 (𝑥 ∈ Inaccw → (𝒫 𝑦 ∈ Fin → 𝒫 𝑦𝑥))
134, 12biimtrid 241 . . . . . . . . . . . 12 (𝑥 ∈ Inaccw → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1413ad3antlr 728 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1514a1dd 50 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
16 vex 3445 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 simplll 772 . . . . . . . . . . . . . . 15 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → GCH = V)
1816, 17eleqtrrid 2844 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑦 ∈ GCH)
19 simprr 770 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ¬ 𝑦 ∈ Fin)
20 gchinf 10515 . . . . . . . . . . . . . 14 ((𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin) → ω ≼ 𝑦)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ω ≼ 𝑦)
22 vex 3445 . . . . . . . . . . . . . 14 𝑧 ∈ V
2322, 17eleqtrrid 2844 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑧 ∈ GCH)
24 gchpwdom 10528 . . . . . . . . . . . . 13 ((ω ≼ 𝑦𝑦 ∈ GCH ∧ 𝑧 ∈ GCH) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
2521, 18, 23, 24syl3anc 1370 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
26 winacard 10550 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Inaccw → (card‘𝑥) = 𝑥)
27 iscard 9833 . . . . . . . . . . . . . . . . . 18 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑧𝑥 𝑧𝑥))
2827simprbi 497 . . . . . . . . . . . . . . . . 17 ((card‘𝑥) = 𝑥 → ∀𝑧𝑥 𝑧𝑥)
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ∀𝑧𝑥 𝑧𝑥)
3029ad2antlr 724 . . . . . . . . . . . . . . 15 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → ∀𝑧𝑥 𝑧𝑥)
3130r19.21bi 3230 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → 𝑧𝑥)
32 domsdomtr 8978 . . . . . . . . . . . . . . 15 ((𝒫 𝑦𝑧𝑧𝑥) → 𝒫 𝑦𝑥)
3332expcom 414 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3431, 33syl 17 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3534adantrr 714 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3625, 35sylbid 239 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3736expr 457 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (¬ 𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
3815, 37pm2.61d 179 . . . . . . . . 9 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3938rexlimdva 3148 . . . . . . . 8 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → (∃𝑧𝑥 𝑦𝑧 → 𝒫 𝑦𝑥))
4039ralimdva 3160 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (∀𝑦𝑥𝑧𝑥 𝑦𝑧 → ∀𝑦𝑥 𝒫 𝑦𝑥))
412, 3, 403anim123d 1442 . . . . . 6 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧) → (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)))
42 elwina 10544 . . . . . 6 (𝑥 ∈ Inaccw ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧))
43 elina 10545 . . . . . 6 (𝑥 ∈ Inacc ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥))
4441, 42, 433imtr4g 295 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
451, 44mpd 15 . . . 4 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inacc)
4645ex 413 . . 3 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
47 inawina 10548 . . 3 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
4846, 47impbid1 224 . 2 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
4948eqrdv 2734 1 (GCH = V → Inaccw = Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  Vcvv 3441  wss 3898  c0 4270  𝒫 cpw 4548   class class class wbr 5093  Oncon0 6303  cfv 6480  ωcom 7781  cdom 8803  csdm 8804  Fincfn 8805  cardccrd 9793  cfccf 9795  GCHcgch 10478  Inaccwcwina 10540  Inacccina 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-inf2 9499
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-se 5577  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-isom 6489  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-supp 8049  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-seqom 8350  df-1o 8368  df-2o 8369  df-oadd 8372  df-omul 8373  df-oexp 8374  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-fsupp 9228  df-oi 9368  df-har 9415  df-wdom 9423  df-cnf 9520  df-dju 9759  df-card 9797  df-cf 9799  df-fin4 10145  df-gch 10479  df-wina 10542  df-ina 10543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator