MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Visualization version   GIF version

Theorem gchina 10612
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina (GCH = V → Inaccw = Inacc)

Proof of Theorem gchina
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inaccw)
2 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ≠ ∅ → 𝑥 ≠ ∅))
3 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((cf‘𝑥) = 𝑥 → (cf‘𝑥) = 𝑥))
4 pwfi 9226 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
5 isfinite 9567 . . . . . . . . . . . . . 14 (𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω)
6 winainf 10607 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ω ⊆ 𝑥)
7 ssdomg 8932 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → (ω ⊆ 𝑥 → ω ≼ 𝑥))
86, 7mpd 15 . . . . . . . . . . . . . . 15 (𝑥 ∈ Inaccw → ω ≼ 𝑥)
9 sdomdomtr 9034 . . . . . . . . . . . . . . . 16 ((𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥) → 𝒫 𝑦𝑥)
109expcom 413 . . . . . . . . . . . . . . 15 (ω ≼ 𝑥 → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
118, 10syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ Inaccw → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
125, 11biimtrid 242 . . . . . . . . . . . . 13 (𝑥 ∈ Inaccw → (𝒫 𝑦 ∈ Fin → 𝒫 𝑦𝑥))
134, 12biimtrid 242 . . . . . . . . . . . 12 (𝑥 ∈ Inaccw → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1413ad3antlr 731 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1514a1dd 50 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
16 vex 3442 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 simplll 774 . . . . . . . . . . . . . . 15 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → GCH = V)
1816, 17eleqtrrid 2835 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑦 ∈ GCH)
19 simprr 772 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ¬ 𝑦 ∈ Fin)
20 gchinf 10570 . . . . . . . . . . . . . 14 ((𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin) → ω ≼ 𝑦)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ω ≼ 𝑦)
22 vex 3442 . . . . . . . . . . . . . 14 𝑧 ∈ V
2322, 17eleqtrrid 2835 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑧 ∈ GCH)
24 gchpwdom 10583 . . . . . . . . . . . . 13 ((ω ≼ 𝑦𝑦 ∈ GCH ∧ 𝑧 ∈ GCH) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
2521, 18, 23, 24syl3anc 1373 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
26 winacard 10605 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Inaccw → (card‘𝑥) = 𝑥)
27 iscard 9890 . . . . . . . . . . . . . . . . . 18 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑧𝑥 𝑧𝑥))
2827simprbi 496 . . . . . . . . . . . . . . . . 17 ((card‘𝑥) = 𝑥 → ∀𝑧𝑥 𝑧𝑥)
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ∀𝑧𝑥 𝑧𝑥)
3029ad2antlr 727 . . . . . . . . . . . . . . 15 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → ∀𝑧𝑥 𝑧𝑥)
3130r19.21bi 3221 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → 𝑧𝑥)
32 domsdomtr 9036 . . . . . . . . . . . . . . 15 ((𝒫 𝑦𝑧𝑧𝑥) → 𝒫 𝑦𝑥)
3332expcom 413 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3431, 33syl 17 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3534adantrr 717 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3625, 35sylbid 240 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3736expr 456 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (¬ 𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
3815, 37pm2.61d 179 . . . . . . . . 9 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3938rexlimdva 3130 . . . . . . . 8 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → (∃𝑧𝑥 𝑦𝑧 → 𝒫 𝑦𝑥))
4039ralimdva 3141 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (∀𝑦𝑥𝑧𝑥 𝑦𝑧 → ∀𝑦𝑥 𝒫 𝑦𝑥))
412, 3, 403anim123d 1445 . . . . . 6 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧) → (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)))
42 elwina 10599 . . . . . 6 (𝑥 ∈ Inaccw ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧))
43 elina 10600 . . . . . 6 (𝑥 ∈ Inacc ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥))
4441, 42, 433imtr4g 296 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
451, 44mpd 15 . . . 4 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inacc)
4645ex 412 . . 3 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
47 inawina 10603 . . 3 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
4846, 47impbid1 225 . 2 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
4948eqrdv 2727 1 (GCH = V → Inaccw = Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   class class class wbr 5095  Oncon0 6311  cfv 6486  ωcom 7806  cdom 8877  csdm 8878  Fincfn 8879  cardccrd 9850  cfccf 9852  GCHcgch 10533  Inaccwcwina 10595  Inacccina 10596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seqom 8377  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-oexp 8401  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-har 9468  df-wdom 9476  df-cnf 9577  df-dju 9816  df-card 9854  df-cf 9856  df-fin4 10200  df-gch 10534  df-wina 10597  df-ina 10598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator