MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Visualization version   GIF version

Theorem gchina 10635
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina (GCH = V → Inaccw = Inacc)

Proof of Theorem gchina
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inaccw)
2 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ≠ ∅ → 𝑥 ≠ ∅))
3 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((cf‘𝑥) = 𝑥 → (cf‘𝑥) = 𝑥))
4 pwfi 9122 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
5 isfinite 9588 . . . . . . . . . . . . . 14 (𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω)
6 winainf 10630 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ω ⊆ 𝑥)
7 ssdomg 8940 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → (ω ⊆ 𝑥 → ω ≼ 𝑥))
86, 7mpd 15 . . . . . . . . . . . . . . 15 (𝑥 ∈ Inaccw → ω ≼ 𝑥)
9 sdomdomtr 9054 . . . . . . . . . . . . . . . 16 ((𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥) → 𝒫 𝑦𝑥)
109expcom 414 . . . . . . . . . . . . . . 15 (ω ≼ 𝑥 → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
118, 10syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ Inaccw → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
125, 11biimtrid 241 . . . . . . . . . . . . 13 (𝑥 ∈ Inaccw → (𝒫 𝑦 ∈ Fin → 𝒫 𝑦𝑥))
134, 12biimtrid 241 . . . . . . . . . . . 12 (𝑥 ∈ Inaccw → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1413ad3antlr 729 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1514a1dd 50 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
16 vex 3449 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 simplll 773 . . . . . . . . . . . . . . 15 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → GCH = V)
1816, 17eleqtrrid 2845 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑦 ∈ GCH)
19 simprr 771 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ¬ 𝑦 ∈ Fin)
20 gchinf 10593 . . . . . . . . . . . . . 14 ((𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin) → ω ≼ 𝑦)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ω ≼ 𝑦)
22 vex 3449 . . . . . . . . . . . . . 14 𝑧 ∈ V
2322, 17eleqtrrid 2845 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑧 ∈ GCH)
24 gchpwdom 10606 . . . . . . . . . . . . 13 ((ω ≼ 𝑦𝑦 ∈ GCH ∧ 𝑧 ∈ GCH) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
2521, 18, 23, 24syl3anc 1371 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
26 winacard 10628 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Inaccw → (card‘𝑥) = 𝑥)
27 iscard 9911 . . . . . . . . . . . . . . . . . 18 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑧𝑥 𝑧𝑥))
2827simprbi 497 . . . . . . . . . . . . . . . . 17 ((card‘𝑥) = 𝑥 → ∀𝑧𝑥 𝑧𝑥)
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ∀𝑧𝑥 𝑧𝑥)
3029ad2antlr 725 . . . . . . . . . . . . . . 15 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → ∀𝑧𝑥 𝑧𝑥)
3130r19.21bi 3234 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → 𝑧𝑥)
32 domsdomtr 9056 . . . . . . . . . . . . . . 15 ((𝒫 𝑦𝑧𝑧𝑥) → 𝒫 𝑦𝑥)
3332expcom 414 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3431, 33syl 17 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3534adantrr 715 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3625, 35sylbid 239 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3736expr 457 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (¬ 𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
3815, 37pm2.61d 179 . . . . . . . . 9 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3938rexlimdva 3152 . . . . . . . 8 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → (∃𝑧𝑥 𝑦𝑧 → 𝒫 𝑦𝑥))
4039ralimdva 3164 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (∀𝑦𝑥𝑧𝑥 𝑦𝑧 → ∀𝑦𝑥 𝒫 𝑦𝑥))
412, 3, 403anim123d 1443 . . . . . 6 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧) → (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)))
42 elwina 10622 . . . . . 6 (𝑥 ∈ Inaccw ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧))
43 elina 10623 . . . . . 6 (𝑥 ∈ Inacc ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥))
4441, 42, 433imtr4g 295 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
451, 44mpd 15 . . . 4 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inacc)
4645ex 413 . . 3 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
47 inawina 10626 . . 3 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
4846, 47impbid1 224 . 2 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
4948eqrdv 2734 1 (GCH = V → Inaccw = Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560   class class class wbr 5105  Oncon0 6317  cfv 6496  ωcom 7802  cdom 8881  csdm 8882  Fincfn 8883  cardccrd 9871  cfccf 9873  GCHcgch 10556  Inaccwcwina 10618  Inacccina 10619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-har 9493  df-wdom 9501  df-cnf 9598  df-dju 9837  df-card 9875  df-cf 9877  df-fin4 10223  df-gch 10557  df-wina 10620  df-ina 10621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator