MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Visualization version   GIF version

Theorem gchina 10713
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina (GCH = V → Inaccw = Inacc)

Proof of Theorem gchina
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inaccw)
2 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ≠ ∅ → 𝑥 ≠ ∅))
3 idd 24 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((cf‘𝑥) = 𝑥 → (cf‘𝑥) = 𝑥))
4 pwfi 9329 . . . . . . . . . . . . 13 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
5 isfinite 9666 . . . . . . . . . . . . . 14 (𝒫 𝑦 ∈ Fin ↔ 𝒫 𝑦 ≺ ω)
6 winainf 10708 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ω ⊆ 𝑥)
7 ssdomg 9014 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → (ω ⊆ 𝑥 → ω ≼ 𝑥))
86, 7mpd 15 . . . . . . . . . . . . . . 15 (𝑥 ∈ Inaccw → ω ≼ 𝑥)
9 sdomdomtr 9124 . . . . . . . . . . . . . . . 16 ((𝒫 𝑦 ≺ ω ∧ ω ≼ 𝑥) → 𝒫 𝑦𝑥)
109expcom 413 . . . . . . . . . . . . . . 15 (ω ≼ 𝑥 → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
118, 10syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ Inaccw → (𝒫 𝑦 ≺ ω → 𝒫 𝑦𝑥))
125, 11biimtrid 242 . . . . . . . . . . . . 13 (𝑥 ∈ Inaccw → (𝒫 𝑦 ∈ Fin → 𝒫 𝑦𝑥))
134, 12biimtrid 242 . . . . . . . . . . . 12 (𝑥 ∈ Inaccw → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1413ad3antlr 731 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → 𝒫 𝑦𝑥))
1514a1dd 50 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
16 vex 3463 . . . . . . . . . . . . . . 15 𝑦 ∈ V
17 simplll 774 . . . . . . . . . . . . . . 15 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → GCH = V)
1816, 17eleqtrrid 2841 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑦 ∈ GCH)
19 simprr 772 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ¬ 𝑦 ∈ Fin)
20 gchinf 10671 . . . . . . . . . . . . . 14 ((𝑦 ∈ GCH ∧ ¬ 𝑦 ∈ Fin) → ω ≼ 𝑦)
2118, 19, 20syl2anc 584 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → ω ≼ 𝑦)
22 vex 3463 . . . . . . . . . . . . . 14 𝑧 ∈ V
2322, 17eleqtrrid 2841 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → 𝑧 ∈ GCH)
24 gchpwdom 10684 . . . . . . . . . . . . 13 ((ω ≼ 𝑦𝑦 ∈ GCH ∧ 𝑧 ∈ GCH) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
2521, 18, 23, 24syl3anc 1373 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 ↔ 𝒫 𝑦𝑧))
26 winacard 10706 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Inaccw → (card‘𝑥) = 𝑥)
27 iscard 9989 . . . . . . . . . . . . . . . . . 18 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑧𝑥 𝑧𝑥))
2827simprbi 496 . . . . . . . . . . . . . . . . 17 ((card‘𝑥) = 𝑥 → ∀𝑧𝑥 𝑧𝑥)
2926, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Inaccw → ∀𝑧𝑥 𝑧𝑥)
3029ad2antlr 727 . . . . . . . . . . . . . . 15 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → ∀𝑧𝑥 𝑧𝑥)
3130r19.21bi 3234 . . . . . . . . . . . . . 14 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → 𝑧𝑥)
32 domsdomtr 9126 . . . . . . . . . . . . . . 15 ((𝒫 𝑦𝑧𝑧𝑥) → 𝒫 𝑦𝑥)
3332expcom 413 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3431, 33syl 17 . . . . . . . . . . . . 13 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3534adantrr 717 . . . . . . . . . . . 12 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝒫 𝑦𝑧 → 𝒫 𝑦𝑥))
3625, 35sylbid 240 . . . . . . . . . . 11 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ (𝑧𝑥 ∧ ¬ 𝑦 ∈ Fin)) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3736expr 456 . . . . . . . . . 10 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (¬ 𝑦 ∈ Fin → (𝑦𝑧 → 𝒫 𝑦𝑥)))
3815, 37pm2.61d 179 . . . . . . . . 9 ((((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → (𝑦𝑧 → 𝒫 𝑦𝑥))
3938rexlimdva 3141 . . . . . . . 8 (((GCH = V ∧ 𝑥 ∈ Inaccw) ∧ 𝑦𝑥) → (∃𝑧𝑥 𝑦𝑧 → 𝒫 𝑦𝑥))
4039ralimdva 3152 . . . . . . 7 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (∀𝑦𝑥𝑧𝑥 𝑦𝑧 → ∀𝑦𝑥 𝒫 𝑦𝑥))
412, 3, 403anim123d 1445 . . . . . 6 ((GCH = V ∧ 𝑥 ∈ Inaccw) → ((𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧) → (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)))
42 elwina 10700 . . . . . 6 (𝑥 ∈ Inaccw ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧))
43 elina 10701 . . . . . 6 (𝑥 ∈ Inacc ↔ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥))
4441, 42, 433imtr4g 296 . . . . 5 ((GCH = V ∧ 𝑥 ∈ Inaccw) → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
451, 44mpd 15 . . . 4 ((GCH = V ∧ 𝑥 ∈ Inaccw) → 𝑥 ∈ Inacc)
4645ex 412 . . 3 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
47 inawina 10704 . . 3 (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw)
4846, 47impbid1 225 . 2 (GCH = V → (𝑥 ∈ Inaccw𝑥 ∈ Inacc))
4948eqrdv 2733 1 (GCH = V → Inaccw = Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575   class class class wbr 5119  Oncon0 6352  cfv 6531  ωcom 7861  cdom 8957  csdm 8958  Fincfn 8959  cardccrd 9949  cfccf 9951  GCHcgch 10634  Inaccwcwina 10696  Inacccina 10697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-har 9571  df-wdom 9579  df-cnf 9676  df-dju 9915  df-card 9953  df-cf 9955  df-fin4 10301  df-gch 10635  df-wina 10698  df-ina 10699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator