Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosubdir Structured version   Visualization version   GIF version

Theorem rngosubdir 37906
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringsubdi.1 𝐺 = (1st𝑅)
ringsubdi.2 𝐻 = (2nd𝑅)
ringsubdi.3 𝑋 = ran 𝐺
ringsubdi.4 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
rngosubdir ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)))

Proof of Theorem rngosubdir
StepHypRef Expression
1 ringsubdi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringsubdi.3 . . . . 5 𝑋 = ran 𝐺
3 eqid 2740 . . . . 5 (inv‘𝐺) = (inv‘𝐺)
4 ringsubdi.4 . . . . 5 𝐷 = ( /𝑔𝐺)
51, 2, 3, 4rngosub 37890 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
653adant3r3 1184 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
76oveq1d 7463 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐻𝐶) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶))
8 ringsubdi.2 . . . . . . 7 𝐻 = (2nd𝑅)
91, 8, 2rngocl 37861 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
1093adant3r2 1183 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
111, 8, 2rngocl 37861 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐻𝐶) ∈ 𝑋)
12113adant3r1 1182 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐻𝐶) ∈ 𝑋)
1310, 12jca 511 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶) ∈ 𝑋 ∧ (𝐵𝐻𝐶) ∈ 𝑋))
141, 2, 3, 4rngosub 37890 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐶) ∈ 𝑋 ∧ (𝐵𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
15143expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋 ∧ (𝐵𝐻𝐶) ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
1613, 15syldan 590 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
17 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐴𝑋𝐴𝑋))
181, 2, 3rngonegcl 37887 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋)
1918ex 412 . . . . . . 7 (𝑅 ∈ RingOps → (𝐵𝑋 → ((inv‘𝐺)‘𝐵) ∈ 𝑋))
20 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐶𝑋𝐶𝑋))
2117, 19, 203anim123d 1443 . . . . . 6 (𝑅 ∈ RingOps → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐶𝑋)))
2221imp 406 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐶𝑋))
231, 8, 2rngodir 37865 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐶𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(((inv‘𝐺)‘𝐵)𝐻𝐶)))
2422, 23syldan 590 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(((inv‘𝐺)‘𝐵)𝐻𝐶)))
251, 8, 2, 3rngoneglmul 37903 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → ((inv‘𝐺)‘(𝐵𝐻𝐶)) = (((inv‘𝐺)‘𝐵)𝐻𝐶))
26253adant3r1 1182 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘(𝐵𝐻𝐶)) = (((inv‘𝐺)‘𝐵)𝐻𝐶))
2726oveq2d 7464 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))) = ((𝐴𝐻𝐶)𝐺(((inv‘𝐺)‘𝐵)𝐻𝐶)))
2824, 27eqtr4d 2783 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
2916, 28eqtr4d 2783 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶))
307, 29eqtr4d 2783 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ran crn 5701  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  invcgn 30523   /𝑔 cgs 30524  RingOpscrngo 37854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-ass 37803  df-exid 37805  df-mgmOLD 37809  df-sgrOLD 37821  df-mndo 37827  df-rngo 37855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator