Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosubdir Structured version   Visualization version   GIF version

Theorem rngosubdir 36104
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringsubdi.1 𝐺 = (1st𝑅)
ringsubdi.2 𝐻 = (2nd𝑅)
ringsubdi.3 𝑋 = ran 𝐺
ringsubdi.4 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
rngosubdir ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)))

Proof of Theorem rngosubdir
StepHypRef Expression
1 ringsubdi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringsubdi.3 . . . . 5 𝑋 = ran 𝐺
3 eqid 2738 . . . . 5 (inv‘𝐺) = (inv‘𝐺)
4 ringsubdi.4 . . . . 5 𝐷 = ( /𝑔𝐺)
51, 2, 3, 4rngosub 36088 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
653adant3r3 1183 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵)))
76oveq1d 7290 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐻𝐶) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶))
8 ringsubdi.2 . . . . . . 7 𝐻 = (2nd𝑅)
91, 8, 2rngocl 36059 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
1093adant3r2 1182 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
111, 8, 2rngocl 36059 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐻𝐶) ∈ 𝑋)
12113adant3r1 1181 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐻𝐶) ∈ 𝑋)
1310, 12jca 512 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶) ∈ 𝑋 ∧ (𝐵𝐻𝐶) ∈ 𝑋))
141, 2, 3, 4rngosub 36088 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐶) ∈ 𝑋 ∧ (𝐵𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
15143expb 1119 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋 ∧ (𝐵𝐻𝐶) ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
17 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐴𝑋𝐴𝑋))
181, 2, 3rngonegcl 36085 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋)
1918ex 413 . . . . . . 7 (𝑅 ∈ RingOps → (𝐵𝑋 → ((inv‘𝐺)‘𝐵) ∈ 𝑋))
20 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐶𝑋𝐶𝑋))
2117, 19, 203anim123d 1442 . . . . . 6 (𝑅 ∈ RingOps → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐶𝑋)))
2221imp 407 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐶𝑋))
231, 8, 2rngodir 36063 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋𝐶𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(((inv‘𝐺)‘𝐵)𝐻𝐶)))
2422, 23syldan 591 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(((inv‘𝐺)‘𝐵)𝐻𝐶)))
251, 8, 2, 3rngoneglmul 36101 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → ((inv‘𝐺)‘(𝐵𝐻𝐶)) = (((inv‘𝐺)‘𝐵)𝐻𝐶))
26253adant3r1 1181 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘(𝐵𝐻𝐶)) = (((inv‘𝐺)‘𝐵)𝐻𝐶))
2726oveq2d 7291 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))) = ((𝐴𝐻𝐶)𝐺(((inv‘𝐺)‘𝐵)𝐻𝐶)))
2824, 27eqtr4d 2781 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶) = ((𝐴𝐻𝐶)𝐺((inv‘𝐺)‘(𝐵𝐻𝐶))))
2916, 28eqtr4d 2781 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐻𝐶))
307, 29eqtr4d 2781 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐷(𝐵𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  invcgn 28853   /𝑔 cgs 28854  RingOpscrngo 36052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-ass 36001  df-exid 36003  df-mgmOLD 36007  df-sgrOLD 36019  df-mndo 36025  df-rngo 36053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator