MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknwwlksn Structured version   Visualization version   GIF version

Theorem clwwlknwwlksn 29288
Description: A word representing a closed walk of length 𝑁 also represents a walk of length 𝑁 βˆ’ 1. The walk is one edge shorter than the closed walk, because the last edge connecting the last with the first vertex is missing. For example, if βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∈ (3 ClWWalksN 𝐺) represents a closed walk "abca" of length 3, then βŸ¨β€œπ‘Žπ‘π‘β€βŸ© ∈ (2 WWalksN 𝐺) represents a walk "abc" (not closed if π‘Ž β‰  𝑐) of length 2, and βŸ¨β€œπ‘Žπ‘π‘π‘Žβ€βŸ© ∈ (3 WWalksN 𝐺) represents also a closed walk "abca" of length 3. (Contributed by AV, 24-Jan-2022.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlknwwlksn (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ π‘Š ∈ ((𝑁 βˆ’ 1) WWalksN 𝐺))

Proof of Theorem clwwlknwwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 29283 . 2 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ 𝑁 ∈ β„•)
2 idd 24 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ π‘Š ∈ Word (Vtxβ€˜πΊ)))
3 idd 24 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
4 nncn 12219 . . . . . . . . . . . . . 14 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„‚)
5 npcan1 11638 . . . . . . . . . . . . . 14 (𝑁 ∈ β„‚ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
64, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ β„• β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
76eqcomd 2738 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ 𝑁 = ((𝑁 βˆ’ 1) + 1))
87eqeq2d 2743 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ ((β™―β€˜π‘Š) = 𝑁 ↔ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1)))
98biimpd 228 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ ((β™―β€˜π‘Š) = 𝑁 β†’ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1)))
102, 3, 93anim123d 1443 . . . . . . . . 9 (𝑁 ∈ β„• β†’ ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))
1110com12 32 . . . . . . . 8 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (𝑁 ∈ β„• β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))
12113exp 1119 . . . . . . 7 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = 𝑁 β†’ (𝑁 ∈ β„• β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))))
1312a1dd 50 . . . . . 6 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = 𝑁 β†’ (𝑁 ∈ β„• β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1)))))))
1413adantr 481 . . . . 5 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ π‘Š β‰  βˆ…) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ({(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = 𝑁 β†’ (𝑁 ∈ β„• β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1)))))))
15143imp1 1347 . . . 4 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (𝑁 ∈ β„• β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))
1615com12 32 . . 3 (𝑁 ∈ β„• β†’ ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = 𝑁) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))
17 isclwwlkn 29277 . . . . 5 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ (π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁))
1817a1i 11 . . . 4 (𝑁 ∈ β„• β†’ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ (π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁)))
19 eqid 2732 . . . . . 6 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
20 eqid 2732 . . . . . 6 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
2119, 20isclwwlk 29234 . . . . 5 (π‘Š ∈ (ClWWalksβ€˜πΊ) ↔ ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
2221anbi1i 624 . . . 4 ((π‘Š ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜π‘Š) = 𝑁) ↔ (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = 𝑁))
2318, 22bitrdi 286 . . 3 (𝑁 ∈ β„• β†’ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) ↔ (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ π‘Š β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Š) = 𝑁)))
24 nnm1nn0 12512 . . . 4 (𝑁 ∈ β„• β†’ (𝑁 βˆ’ 1) ∈ β„•0)
2519, 20iswwlksnx 29091 . . . 4 ((𝑁 βˆ’ 1) ∈ β„•0 β†’ (π‘Š ∈ ((𝑁 βˆ’ 1) WWalksN 𝐺) ↔ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))
2624, 25syl 17 . . 3 (𝑁 ∈ β„• β†’ (π‘Š ∈ ((𝑁 βˆ’ 1) WWalksN 𝐺) ↔ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ (β™―β€˜π‘Š) = ((𝑁 βˆ’ 1) + 1))))
2716, 23, 263imtr4d 293 . 2 (𝑁 ∈ β„• β†’ (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ π‘Š ∈ ((𝑁 βˆ’ 1) WWalksN 𝐺)))
281, 27mpcom 38 1 (π‘Š ∈ (𝑁 ClWWalksN 𝐺) β†’ π‘Š ∈ ((𝑁 βˆ’ 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆ…c0 4322  {cpr 4630  β€˜cfv 6543  (class class class)co 7408  β„‚cc 11107  0cc0 11109  1c1 11110   + caddc 11112   βˆ’ cmin 11443  β„•cn 12211  β„•0cn0 12471  ..^cfzo 13626  β™―chash 14289  Word cword 14463  lastSclsw 14511  Vtxcvtx 28253  Edgcedg 28304   WWalksN cwwlksn 29077  ClWWalkscclwwlk 29231   ClWWalksN cclwwlkn 29274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-wwlks 29081  df-wwlksn 29082  df-clwwlk 29232  df-clwwlkn 29275
This theorem is referenced by:  clwwnrepclwwn  29594
  Copyright terms: Public domain W3C validator