MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknwwlksn Structured version   Visualization version   GIF version

Theorem clwwlknwwlksn 27823
Description: A word representing a closed walk of length 𝑁 also represents a walk of length 𝑁 − 1. The walk is one edge shorter than the closed walk, because the last edge connecting the last with the first vertex is missing. For example, if ⟨“𝑎𝑏𝑐”⟩ ∈ (3 ClWWalksN 𝐺) represents a closed walk "abca" of length 3, then ⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) represents a walk "abc" (not closed if 𝑎𝑐) of length 2, and ⟨“𝑎𝑏𝑐𝑎”⟩ ∈ (3 WWalksN 𝐺) represents also a closed walk "abca" of length 3. (Contributed by AV, 24-Jan-2022.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlknwwlksn (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))

Proof of Theorem clwwlknwwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 27818 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2 idd 24 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)))
3 idd 24 . . . . . . . . . 10 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 nncn 11633 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
5 npcan1 11054 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
64, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2804 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
87eqeq2d 2809 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 ↔ (♯‘𝑊) = ((𝑁 − 1) + 1)))
98biimpd 232 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → (♯‘𝑊) = ((𝑁 − 1) + 1)))
102, 3, 93anim123d 1440 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1110com12 32 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
12113exp 1116 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))))
1312a1dd 50 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
1413adantr 484 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
15143imp1 1344 . . . 4 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1615com12 32 . . 3 (𝑁 ∈ ℕ → ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
17 isclwwlkn 27812 . . . . 5 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
1817a1i 11 . . . 4 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)))
19 eqid 2798 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
20 eqid 2798 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
2119, 20isclwwlk 27769 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
2221anbi1i 626 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁))
2318, 22syl6bb 290 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁)))
24 nnm1nn0 11926 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2519, 20iswwlksnx 27626 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2624, 25syl 17 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2716, 23, 263imtr4d 297 . 2 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)))
281, 27mpcom 38 1 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  c0 4243  {cpr 4527  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  cn 11625  0cn0 11885  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905  Vtxcvtx 26789  Edgcedg 26840   WWalksN cwwlksn 27612  ClWWalkscclwwlk 27766   ClWWalksN cclwwlkn 27809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-wwlks 27616  df-wwlksn 27617  df-clwwlk 27767  df-clwwlkn 27810
This theorem is referenced by:  clwwnrepclwwn  28129
  Copyright terms: Public domain W3C validator