Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknwwlksn Structured version   Visualization version   GIF version

Theorem clwwlknwwlksn 27802
 Description: A word representing a closed walk of length 𝑁 also represents a walk of length 𝑁 − 1. The walk is one edge shorter than the closed walk, because the last edge connecting the last with the first vertex is missing. For example, if ⟨“𝑎𝑏𝑐”⟩ ∈ (3 ClWWalksN 𝐺) represents a closed walk "abca" of length 3, then ⟨“𝑎𝑏𝑐”⟩ ∈ (2 WWalksN 𝐺) represents a walk "abc" (not closed if 𝑎 ≠ 𝑐) of length 2, and ⟨“𝑎𝑏𝑐𝑎”⟩ ∈ (3 WWalksN 𝐺) represents also a closed walk "abca" of length 3. (Contributed by AV, 24-Jan-2022.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlknwwlksn (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))

Proof of Theorem clwwlknwwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 27797 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2 idd 24 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)))
3 idd 24 . . . . . . . . . 10 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 nncn 11623 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
5 npcan1 11042 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
64, 5syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2827 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
87eqeq2d 2832 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 ↔ (♯‘𝑊) = ((𝑁 − 1) + 1)))
98biimpd 232 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → (♯‘𝑊) = ((𝑁 − 1) + 1)))
102, 3, 93anim123d 1440 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1110com12 32 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
12113exp 1116 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))))
1312a1dd 50 . . . . . 6 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
1413adantr 484 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1)))))))
15143imp1 1344 . . . 4 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
1615com12 32 . . 3 (𝑁 ∈ ℕ → ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
17 isclwwlkn 27791 . . . . 5 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
1817a1i 11 . . . 4 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)))
19 eqid 2821 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
20 eqid 2821 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
2119, 20isclwwlk 27748 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
2221anbi1i 626 . . . 4 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁))
2318, 22syl6bb 290 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 𝑁)))
24 nnm1nn0 11916 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2519, 20iswwlksnx 27605 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2624, 25syl 17 . . 3 (𝑁 ∈ ℕ → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘𝑊) = ((𝑁 − 1) + 1))))
2716, 23, 263imtr4d 297 . 2 (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)))
281, 27mpcom 38 1 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  ∅c0 4266  {cpr 4542  ‘cfv 6328  (class class class)co 7130  ℂcc 10512  0cc0 10514  1c1 10515   + caddc 10517   − cmin 10847  ℕcn 11615  ℕ0cn0 11875  ..^cfzo 13016  ♯chash 13674  Word cword 13845  lastSclsw 13893  Vtxcvtx 26768  Edgcedg 26819   WWalksN cwwlksn 27591  ClWWalkscclwwlk 27745   ClWWalksN cclwwlkn 27788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-wwlks 27595  df-wwlksn 27596  df-clwwlk 27746  df-clwwlkn 27789 This theorem is referenced by:  clwwnrepclwwn  28108
 Copyright terms: Public domain W3C validator