| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv2ss | Structured version Visualization version GIF version | ||
| Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv2ss | ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3956 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝑇 ⊆ (Base‘𝑊))) | |
| 2 | idd 24 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ (Base‘𝑊) → 𝑥 ∈ (Base‘𝑊))) | |
| 3 | ssralv 4018 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) → ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | |
| 4 | 1, 2, 3 | 3anim123d 1445 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ((𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) → (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | eqid 2730 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 7 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2730 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 9 | ocv2ss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | elocv 21584 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 11 | 5, 6, 7, 8, 9 | elocv 21584 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑇) ↔ (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 12 | 4, 10, 11 | 3imtr4g 296 | . 2 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ ( ⊥ ‘𝑇))) |
| 13 | 12 | ssrdv 3955 | 1 ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑖cip 17232 0gc0g 17409 ocvcocv 21576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-ocv 21579 |
| This theorem is referenced by: ocvsscon 21591 ocvlsp 21592 ocvcss 21603 cssmre 21609 mrccss 21610 clsocv 25157 |
| Copyright terms: Public domain | W3C validator |