| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv2ss | Structured version Visualization version GIF version | ||
| Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv2ss | ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3961 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝑇 ⊆ (Base‘𝑊))) | |
| 2 | idd 24 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ (Base‘𝑊) → 𝑥 ∈ (Base‘𝑊))) | |
| 3 | ssralv 4023 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) → ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | |
| 4 | 1, 2, 3 | 3anim123d 1445 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ((𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) → (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | eqid 2730 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 7 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2730 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 9 | ocv2ss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | elocv 21583 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 11 | 5, 6, 7, 8, 9 | elocv 21583 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑇) ↔ (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 12 | 4, 10, 11 | 3imtr4g 296 | . 2 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ ( ⊥ ‘𝑇))) |
| 13 | 12 | ssrdv 3960 | 1 ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Scalarcsca 17229 ·𝑖cip 17231 0gc0g 17408 ocvcocv 21575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-ov 7397 df-ocv 21578 |
| This theorem is referenced by: ocvsscon 21590 ocvlsp 21591 ocvcss 21602 cssmre 21608 mrccss 21609 clsocv 25157 |
| Copyright terms: Public domain | W3C validator |