MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocv2ss Structured version   Visualization version   GIF version

Theorem ocv2ss 20859
Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
ocv2ss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocv2ss (𝑇𝑆 → ( 𝑆) ⊆ ( 𝑇))

Proof of Theorem ocv2ss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3932 . . . 4 (𝑇𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝑇 ⊆ (Base‘𝑊)))
2 idd 24 . . . 4 (𝑇𝑆 → (𝑥 ∈ (Base‘𝑊) → 𝑥 ∈ (Base‘𝑊)))
3 ssralv 3991 . . . 4 (𝑇𝑆 → (∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) → ∀𝑦𝑇 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
41, 2, 33anim123d 1441 . . 3 (𝑇𝑆 → ((𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))) → (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦𝑇 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))))
5 eqid 2739 . . . 4 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2739 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
7 eqid 2739 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2739 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
9 ocv2ss.o . . . 4 = (ocv‘𝑊)
105, 6, 7, 8, 9elocv 20854 . . 3 (𝑥 ∈ ( 𝑆) ↔ (𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
115, 6, 7, 8, 9elocv 20854 . . 3 (𝑥 ∈ ( 𝑇) ↔ (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦𝑇 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
124, 10, 113imtr4g 295 . 2 (𝑇𝑆 → (𝑥 ∈ ( 𝑆) → 𝑥 ∈ ( 𝑇)))
1312ssrdv 3931 1 (𝑇𝑆 → ( 𝑆) ⊆ ( 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  wral 3065  wss 3891  cfv 6430  (class class class)co 7268  Basecbs 16893  Scalarcsca 16946  ·𝑖cip 16948  0gc0g 17131  ocvcocv 20846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-ocv 20849
This theorem is referenced by:  ocvsscon  20861  ocvlsp  20862  ocvcss  20873  cssmre  20879  mrccss  20880  clsocv  24395
  Copyright terms: Public domain W3C validator