| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv2ss | Structured version Visualization version GIF version | ||
| Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv2ss | ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3941 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝑇 ⊆ (Base‘𝑊))) | |
| 2 | idd 24 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ (Base‘𝑊) → 𝑥 ∈ (Base‘𝑊))) | |
| 3 | ssralv 4003 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) → ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | |
| 4 | 1, 2, 3 | 3anim123d 1445 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ((𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) → (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | eqid 2731 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2731 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 9 | ocv2ss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | elocv 21603 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 11 | 5, 6, 7, 8, 9 | elocv 21603 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑇) ↔ (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 12 | 4, 10, 11 | 3imtr4g 296 | . 2 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ ( ⊥ ‘𝑇))) |
| 13 | 12 | ssrdv 3940 | 1 ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Scalarcsca 17161 ·𝑖cip 17163 0gc0g 17340 ocvcocv 21595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-ocv 21598 |
| This theorem is referenced by: ocvsscon 21610 ocvlsp 21611 ocvcss 21622 cssmre 21628 mrccss 21629 clsocv 25175 |
| Copyright terms: Public domain | W3C validator |