| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv2ss | Structured version Visualization version GIF version | ||
| Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv2ss | ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3970 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝑇 ⊆ (Base‘𝑊))) | |
| 2 | idd 24 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ (Base‘𝑊) → 𝑥 ∈ (Base‘𝑊))) | |
| 3 | ssralv 4032 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) → ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | |
| 4 | 1, 2, 3 | 3anim123d 1444 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ((𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) → (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 5 | eqid 2734 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | eqid 2734 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 7 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2734 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 9 | ocv2ss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | elocv 21639 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 11 | 5, 6, 7, 8, 9 | elocv 21639 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑇) ↔ (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 12 | 4, 10, 11 | 3imtr4g 296 | . 2 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ ( ⊥ ‘𝑇))) |
| 13 | 12 | ssrdv 3969 | 1 ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 Scalarcsca 17275 ·𝑖cip 17277 0gc0g 17454 ocvcocv 21631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-ocv 21634 |
| This theorem is referenced by: ocvsscon 21646 ocvlsp 21647 ocvcss 21658 cssmre 21664 mrccss 21665 clsocv 25219 |
| Copyright terms: Public domain | W3C validator |