| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocv2ss | Structured version Visualization version GIF version | ||
| Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocv2ss | ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3944 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝑇 ⊆ (Base‘𝑊))) | |
| 2 | idd 24 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ (Base‘𝑊) → 𝑥 ∈ (Base‘𝑊))) | |
| 3 | ssralv 4006 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) → ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) | |
| 4 | 1, 2, 3 | 3anim123d 1445 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ((𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) → (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))))) |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | eqid 2729 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 8 | eqid 2729 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 9 | ocv2ss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | elocv 21593 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 11 | 5, 6, 7, 8, 9 | elocv 21593 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑇) ↔ (𝑇 ⊆ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ ∀𝑦 ∈ 𝑇 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 12 | 4, 10, 11 | 3imtr4g 296 | . 2 ⊢ (𝑇 ⊆ 𝑆 → (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ ( ⊥ ‘𝑇))) |
| 13 | 12 | ssrdv 3943 | 1 ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑖cip 17184 0gc0g 17361 ocvcocv 21585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-ocv 21588 |
| This theorem is referenced by: ocvsscon 21600 ocvlsp 21601 ocvcss 21612 cssmre 21618 mrccss 21619 clsocv 25166 |
| Copyright terms: Public domain | W3C validator |