MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Structured version   Visualization version   GIF version

Theorem fisseneq 9259
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3966 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 pssinf 9258 . . . . . . 7 ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin)
32expcom 412 . . . . . 6 (𝐴𝐵 → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
41, 3biimtrrid 242 . . . . 5 (𝐴𝐵 → ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin))
54expdimp 451 . . . 4 ((𝐴𝐵𝐴𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
65necon4ad 2957 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵))
763impia 1115 . 2 ((𝐴𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 = 𝐵)
873com13 1122 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wss 3947  wpss 3948   class class class wbr 5147  cen 8938  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by:  en1eqsnOLD  9277  en2eqpr  10004  en2eleq  10005  psgnunilem1  19402  sylow2blem1  19529  fislw  19534  sylow2  19535  cyggenod  19793  ablfac1c  19982  ablfac1eu  19984  fta1blem  25921  vieta1  26061  upgrex  28619  fisshasheq  34402  poimirlem26  36817  fiuneneq  42241
  Copyright terms: Public domain W3C validator