![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fisseneq | Structured version Visualization version GIF version |
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
Ref | Expression |
---|---|
fisseneq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3871 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssinf 8564 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | |
3 | 2 | expcom 414 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ∈ Fin)) |
4 | 1, 3 | syl5bir 244 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ Fin)) |
5 | 4 | expdimp 453 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ Fin)) |
6 | 5 | necon4ad 3001 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵)) |
7 | 6 | 3impia 1108 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 = 𝐵) |
8 | 7 | 3com13 1115 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ⊆ wss 3854 ⊊ wpss 3855 class class class wbr 4956 ≈ cen 8344 Fincfn 8347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-om 7428 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 |
This theorem is referenced by: en1eqsn 8584 en2eqpr 9268 en2eleq 9269 psgnunilem1 18340 sylow2blem1 18463 fislw 18468 sylow2 18469 cyggenod 18714 ablfac1c 18898 ablfac1eu 18900 fta1blem 24433 vieta1 24572 upgrex 26548 fisshasheq 31922 poimirlem26 34395 fiuneneq 39233 |
Copyright terms: Public domain | W3C validator |