MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Structured version   Visualization version   GIF version

Theorem fisseneq 8889
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3885 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 pssinf 8888 . . . . . . 7 ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin)
32expcom 417 . . . . . 6 (𝐴𝐵 → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
41, 3syl5bir 246 . . . . 5 (𝐴𝐵 → ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin))
54expdimp 456 . . . 4 ((𝐴𝐵𝐴𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
65necon4ad 2959 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵))
763impia 1119 . 2 ((𝐴𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 = 𝐵)
873com13 1126 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wss 3866  wpss 3867   class class class wbr 5053  cen 8623  Fincfn 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630
This theorem is referenced by:  en1eqsn  8904  en2eqpr  9621  en2eleq  9622  psgnunilem1  18885  sylow2blem1  19009  fislw  19014  sylow2  19015  cyggenod  19268  ablfac1c  19458  ablfac1eu  19460  fta1blem  25066  vieta1  25205  upgrex  27183  fisshasheq  32786  poimirlem26  35540  fiuneneq  40725
  Copyright terms: Public domain W3C validator