MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Structured version   Visualization version   GIF version

Theorem fisseneq 9257
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3968 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 pssinf 9256 . . . . . . 7 ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin)
32expcom 415 . . . . . 6 (𝐴𝐵 → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
41, 3biimtrrid 242 . . . . 5 (𝐴𝐵 → ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin))
54expdimp 454 . . . 4 ((𝐴𝐵𝐴𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
65necon4ad 2960 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵))
763impia 1118 . 2 ((𝐴𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 = 𝐵)
873com13 1125 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wss 3949  wpss 3950   class class class wbr 5149  cen 8936  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943
This theorem is referenced by:  en1eqsnOLD  9275  en2eqpr  10002  en2eleq  10003  psgnunilem1  19361  sylow2blem1  19488  fislw  19493  sylow2  19494  cyggenod  19752  ablfac1c  19941  ablfac1eu  19943  fta1blem  25686  vieta1  25825  upgrex  28352  fisshasheq  34104  poimirlem26  36514  fiuneneq  41939
  Copyright terms: Public domain W3C validator