| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fisseneq | Structured version Visualization version GIF version | ||
| Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
| Ref | Expression |
|---|---|
| fisseneq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3923 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | pssinf 9151 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | |
| 3 | 2 | expcom 413 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ∈ Fin)) |
| 4 | 1, 3 | biimtrrid 243 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ Fin)) |
| 5 | 4 | expdimp 452 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ Fin)) |
| 6 | 5 | necon4ad 2944 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵)) |
| 7 | 6 | 3impia 1117 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 = 𝐵) |
| 8 | 7 | 3com13 1124 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3903 ⊊ wpss 3904 class class class wbr 5092 ≈ cen 8869 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 |
| This theorem is referenced by: en2eqpr 9901 en2eleq 9902 psgnunilem1 19372 sylow2blem1 19499 fislw 19504 sylow2 19505 cyggenod 19763 ablfac1c 19952 ablfac1eu 19954 fta1blem 26074 vieta1 26218 upgrex 29037 hashpss 32755 fisshasheq 35098 poimirlem26 37636 fiuneneq 43175 |
| Copyright terms: Public domain | W3C validator |