![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fisseneq | Structured version Visualization version GIF version |
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
Ref | Expression |
---|---|
fisseneq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3996 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssinf 9319 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | |
3 | 2 | expcom 413 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ∈ Fin)) |
4 | 1, 3 | biimtrrid 243 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ Fin)) |
5 | 4 | expdimp 452 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ Fin)) |
6 | 5 | necon4ad 2965 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵)) |
7 | 6 | 3impia 1117 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 = 𝐵) |
8 | 7 | 3com13 1124 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ⊊ wpss 3977 class class class wbr 5166 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: en1eqsnOLD 9337 en2eqpr 10076 en2eleq 10077 psgnunilem1 19535 sylow2blem1 19662 fislw 19667 sylow2 19668 cyggenod 19926 ablfac1c 20115 ablfac1eu 20117 fta1blem 26230 vieta1 26372 upgrex 29127 fisshasheq 35082 poimirlem26 37606 fiuneneq 43153 |
Copyright terms: Public domain | W3C validator |