![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fisseneq | Structured version Visualization version GIF version |
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
Ref | Expression |
---|---|
fisseneq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3934 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssinf 9207 | . . . . . . 7 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | |
3 | 2 | expcom 415 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ⊊ 𝐵 → ¬ 𝐵 ∈ Fin)) |
4 | 1, 3 | biimtrrid 242 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ Fin)) |
5 | 4 | expdimp 454 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ Fin)) |
6 | 5 | necon4ad 2963 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵)) |
7 | 6 | 3impia 1118 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 = 𝐵) |
8 | 7 | 3com13 1125 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 ⊆ wss 3915 ⊊ wpss 3916 class class class wbr 5110 ≈ cen 8887 Fincfn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-om 7808 df-1o 8417 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 |
This theorem is referenced by: en1eqsnOLD 9226 en2eqpr 9950 en2eleq 9951 psgnunilem1 19282 sylow2blem1 19409 fislw 19414 sylow2 19415 cyggenod 19668 ablfac1c 19857 ablfac1eu 19859 fta1blem 25549 vieta1 25688 upgrex 28085 fisshasheq 33745 poimirlem26 36133 fiuneneq 41553 |
Copyright terms: Public domain | W3C validator |