MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Structured version   Visualization version   GIF version

Theorem fisseneq 9320
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3996 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 pssinf 9319 . . . . . . 7 ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin)
32expcom 413 . . . . . 6 (𝐴𝐵 → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
41, 3biimtrrid 243 . . . . 5 (𝐴𝐵 → ((𝐴𝐵𝐴𝐵) → ¬ 𝐵 ∈ Fin))
54expdimp 452 . . . 4 ((𝐴𝐵𝐴𝐵) → (𝐴𝐵 → ¬ 𝐵 ∈ Fin))
65necon4ad 2965 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐵 ∈ Fin → 𝐴 = 𝐵))
763impia 1117 . 2 ((𝐴𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 = 𝐵)
873com13 1124 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976  wpss 3977   class class class wbr 5166  cen 9000  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  en1eqsnOLD  9337  en2eqpr  10076  en2eleq  10077  psgnunilem1  19535  sylow2blem1  19662  fislw  19667  sylow2  19668  cyggenod  19926  ablfac1c  20115  ablfac1eu  20117  fta1blem  26230  vieta1  26372  upgrex  29127  fisshasheq  35082  poimirlem26  37606  fiuneneq  43153
  Copyright terms: Public domain W3C validator