MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadd Structured version   Visualization version   GIF version

Theorem subadd 11304
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
subadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))

Proof of Theorem subadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subval 11292 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
21eqeq1d 2739 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
323adant3 1131 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
4 negeu 11291 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
5 oveq2 7325 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶))
65eqeq1d 2739 . . . . . 6 (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴))
76riota2 7300 . . . . 5 ((𝐶 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
84, 7sylan2 593 . . . 4 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
983impb 1114 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
1093com13 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶))
113, 10bitr4d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  ∃!wreu 3348  crio 7273  (class class class)co 7317  cc 10949   + caddc 10954  cmin 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-ltxr 11094  df-sub 11287
This theorem is referenced by:  subadd2  11305  subsub23  11306  pncan  11307  pncan3  11309  addsubeq4  11316  subsub2  11329  renegcli  11362  subaddi  11388  subaddd  11430  fzen  13353  nn0ennn  13779  hashssdif  14206  cos2t  15966  cos2tsin  15967  odd2np1  16129  divalglem4  16184  divalglem8  16188  divalgb  16192  mplmonmul  21320  sincosq1eq  25752  coskpi  25762  sto2i  30735  tan2h  35841  poimirlem31  35880  fdc  35975  fppr2odd  45448
  Copyright terms: Public domain W3C validator