![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subadd | Structured version Visualization version GIF version |
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
subadd | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 11457 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | |
2 | 1 | eqeq1d 2732 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
4 | negeu 11456 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) | |
5 | oveq2 7421 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶)) | |
6 | 5 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴)) |
7 | 6 | riota2 7395 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
8 | 4, 7 | sylan2 591 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
9 | 8 | 3impb 1113 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
10 | 9 | 3com13 1122 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
11 | 3, 10 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∃!wreu 3372 ℩crio 7368 (class class class)co 7413 ℂcc 11112 + caddc 11117 − cmin 11450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-sub 11452 |
This theorem is referenced by: subadd2 11470 subsub23 11471 pncan 11472 pncan3 11474 addsubeq4 11481 subsub2 11494 renegcli 11527 subaddi 11553 subaddd 11595 fzen 13524 nn0ennn 13950 hashssdif 14378 cos2t 16127 cos2tsin 16128 odd2np1 16290 divalglem4 16345 divalglem8 16349 divalgb 16353 mplmonmul 21812 sincosq1eq 26256 coskpi 26266 sto2i 31755 tan2h 36785 poimirlem31 36824 fdc 36918 fppr2odd 46699 |
Copyright terms: Public domain | W3C validator |