Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubadd | Structured version Visualization version GIF version |
Description: Relation between real subtraction and addition. Based on subadd 10969. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubval 39949 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
3 | 2 | 3adant3 1133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
4 | resubeu 39959 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
5 | oveq2 7180 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶)) | |
6 | 5 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴)) |
7 | 6 | riota2 7155 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
8 | 4, 7 | sylan2 596 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
9 | 8 | 3impb 1116 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
10 | 9 | 3com13 1125 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
11 | 3, 10 | bitr4d 285 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∃!wreu 3055 ℩crio 7128 (class class class)co 7172 ℝcr 10616 + caddc 10620 −ℝ cresub 39947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-resscn 10674 ax-addrcl 10678 ax-addass 10682 ax-rnegex 10688 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-ltxr 10760 df-resub 39948 |
This theorem is referenced by: resubaddd 39962 repncan3 39965 reladdrsub 39967 sn-00id 39983 |
Copyright terms: Public domain | W3C validator |