Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubadd | Structured version Visualization version GIF version |
Description: Relation between real subtraction and addition. Based on subadd 11154. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubval 40271 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
4 | resubeu 40281 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
5 | oveq2 7263 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶)) | |
6 | 5 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴)) |
7 | 6 | riota2 7238 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
8 | 4, 7 | sylan2 592 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
9 | 8 | 3impb 1113 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
10 | 9 | 3com13 1122 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
11 | 3, 10 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃!wreu 3065 ℩crio 7211 (class class class)co 7255 ℝcr 10801 + caddc 10805 −ℝ cresub 40269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-addrcl 10863 ax-addass 10867 ax-rnegex 10873 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-resub 40270 |
This theorem is referenced by: resubaddd 40284 repncan3 40287 reladdrsub 40289 sn-00id 40305 |
Copyright terms: Public domain | W3C validator |