![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubadd | Structured version Visualization version GIF version |
Description: Relation between real subtraction and addition. Based on subadd 11459. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubval 41695 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) | |
2 | 1 | eqeq1d 2726 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
3 | 2 | 3adant3 1129 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
4 | resubeu 41705 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
5 | oveq2 7409 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶)) | |
6 | 5 | eqeq1d 2726 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴)) |
7 | 6 | riota2 7383 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
8 | 4, 7 | sylan2 592 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
9 | 8 | 3impb 1112 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
10 | 9 | 3com13 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶)) |
11 | 3, 10 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃!wreu 3366 ℩crio 7356 (class class class)co 7401 ℝcr 11104 + caddc 11108 −ℝ cresub 41693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-addrcl 11166 ax-addass 11170 ax-rnegex 11176 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-resub 41694 |
This theorem is referenced by: resubaddd 41708 repncan3 41711 reladdrsub 41713 sn-00id 41729 |
Copyright terms: Public domain | W3C validator |