Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubadd Structured version   Visualization version   GIF version

Theorem resubadd 42500
Description: Relation between real subtraction and addition. Based on subadd 11372. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))

Proof of Theorem resubadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resubval 42488 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
21eqeq1d 2735 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 𝐵) = 𝐶 ↔ (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶))
323adant3 1132 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) = 𝐶 ↔ (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶))
4 resubeu 42498 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
5 oveq2 7362 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 + 𝑥) = (𝐵 + 𝐶))
65eqeq1d 2735 . . . . . 6 (𝑥 = 𝐶 → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝐶) = 𝐴))
76riota2 7336 . . . . 5 ((𝐶 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶))
84, 7sylan2 593 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶))
983impb 1114 . . 3 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶))
1093com13 1124 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = 𝐶))
113, 10bitr4d 282 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ∃!wreu 3345  crio 7310  (class class class)co 7354  cr 11014   + caddc 11018   cresub 42486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-addrcl 11076  ax-addass 11080  ax-rnegex 11086  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-ltxr 11160  df-resub 42487
This theorem is referenced by:  resubaddd  42501  repncan3  42504  reladdrsub  42506  sn-00id  42522
  Copyright terms: Public domain W3C validator